Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(38): 21040-21046, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34259370

RESUMO

The application of anisotropic parameters in NMR-spectroscopy enables the acquisition of spatial and angular information, complementary to those from conventional isotropic NMR-measurements. The use of alignment media is a well-established method for inducing anisotropy. PBPMLG is a recently discovered polyglutamate-based alignment medium, exhibiting thermoresponsive behavior in the lyotropic liquid crystalline (LLC) phase, thus offering potential for deeper understanding of the alignment process. We present one approach for investigating the thermoresponsive behavior by synthesizing specifically deuterated PBPMLG-isotopologues and their subsequent analyses using 2 H NMR-spectroscopy. It was possible to relate the observed thermoresponsive behavior to a flip of the polymer with respect to the external magnetic field-an effect never observed before in glutamate-based polymeric alignment media. Furthermore, a solvent-induced temperature dependent gelation was verified in THF, which might provide yet another opportunity to manipulate the properties of this alignment medium in the future.

2.
J Phys Condens Matter ; 32(11): 115802, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-31756724

RESUMO

Spin fluctuations are a crucial driving force for magnetic phase transitions, but their presence usually is indirectly deduced from macroscopic variables like volume, magnetization or electrical resistivity. Here we report on the direct observation of spin fluctuations in the paramagnetic regime of the magnetocaloric model system LaFe11.6Si1.4 in the form of neutron diffuse scattering. To confirm the magnetic origin of the diffuse scattering, we correlate the temperature dependence of the diffuse intensity with ac magnetic susceptibility and x-ray diffraction experiments under magnetic field. Strong spin fluctuations are already observable at 295 K and their presence alters the thermal contraction behavior of LaFe11.6Si1.4 down to the Curie temperature of the first-order magneto-structural transition at 190 K. We explain the influence of the spin fluctuation amplitude on the lattice parameter in the framework of the internal magnetic pressure model and find that the critical forced magnetostriction follows Takashi's spin fluctuation theory for itinerant electron systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...