Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21861, 2022 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-36529776

RESUMO

Soft robots provide a pathway to accurately mimic biological creatures and be integrated into their environment with minimal invasion or disruption to their ecosystem. These robots made from soft deforming materials possess structural properties and behaviors similar to the bodies and organs of living creatures. However, they are difficult to develop in terms of integrated actuation and sensing, accurate modeling, and precise control. This article presents a soft-rigid hybrid robotic fish inspired by the Pangasius fish. The robot employs a flexible fin ray tail structure driven by a servo motor, to act as the soft body of the robot and provide the undulatory motion to the caudal fin of the fish. To address the modeling and control challenges, reinforcement learning (RL) is proposed as a model-free control strategy for the robot fish to swim and reach a specified target goal. By training and investigating the RL through experiments on real hardware, we illustrate the capability of the fish to learn and achieve the required task.


Assuntos
Peixes-Gato , Robótica , Animais , Biomimética , Ecossistema , Desenho de Equipamento
2.
Sensors (Basel) ; 22(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35957213

RESUMO

Impedance spectroscopy has became an essential non-invasive tool for quality assessment measurements of the biochemical and biophysical changes in plant tissues. The electrical behaviour of biological tissues can be captured by fitting its bio-impedance data to a suitable circuit model. This paper investigates the use of power-law filters in circuit modelling of bio-impedance. The proposed models are fitted to experimental data obtained from eight different fruit types using a meta-heuristic optimization method (the Water Cycle Algorithm (WCA)). Impedance measurements are obtained using a Biologic SP150 electrochemical station, and the percentage error between the actual impedance and the fitted models' impedance are reported. It is found that a circuit model consisting of a combination of two second-order power-law low-pass filters shows the least fitting error.


Assuntos
Algoritmos , Espectroscopia Dielétrica , Impedância Elétrica
3.
Sci Rep ; 12(1): 13278, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918396

RESUMO

In the last decade, Elliptic Curves (ECs) have shown their efficacy as a safe fundamental component in encryption systems, mainly when used in Pseudorandom Number Generator (PRNG) design. This paper proposes a framework for designing EC-based PRNG and maps recent PRNG design techniques into the framework, classifying them as iterative and non-iterative. Furthermore, a PRNG is designed based on the framework and verified using the National Institute of Standards and Technology (NIST) statistical test suite. The PRNG is then utilized in an image encryption system where statistical measures, differential attack measures, the NIST statistical test suite, and system key sensitivity analysis are used to demonstrate the system's security. The results are good and promising as compared with other related work.

4.
Sci Rep ; 12(1): 3992, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273205

RESUMO

Bio-impedance non-invasive measurement techniques usage is rapidly increasing in the agriculture industry. These measured impedance variations reflect tacit biochemical and biophysical changes of living and non-living tissues. Bio-impedance circuit modeling is an effective solution used in biology and medicine to fit the measured impedance. This paper proposes two new fractional-order bio-impedance plant stem models. These new models are compared with three commonly used bio-impedance fractional-order circuit models in plant modeling (Cole, Double Cole, and Fractional-order Double-shell). The two proposed models represent the characterization of the biological cellular morphology of the plant stem. Experiments are conducted on two samples of three different medical plant species from the family Lamiaceae, and each sample is measured at two inter-electrode spacing distances. Bio-impedance measurements are done using an electrochemical station (SP150) in the range of 100 Hz to 100 kHz. All employed models are compared by fitting the measured data to verify the efficiency of the proposed models in modeling the plant stem tissue. The proposed models give the best results in all inter-electrode spacing distances. Four different metaheuristic optimization algorithms are used in the fitting process to extract all models parameter and find the best optimization algorithm in the bio-impedance problems.


Assuntos
Algoritmos , Biofísica , Impedância Elétrica , Eletrodos , Caules de Planta
6.
Micromachines (Basel) ; 13(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35208339

RESUMO

Modeling of soft robotics systems proves to be an extremely difficult task, due to the large deformation of the soft materials used to make such robots. Reliable and accurate models are necessary for the control task of these soft robots. In this paper, a data-driven approach using machine learning is presented to model the kinematics of Soft Pneumatic Actuators (SPAs). An Echo State Network (ESN) architecture is used to predict the SPA's tip position in 3 axes. Initially, data from actual 3D printed SPAs is obtained to build a training dataset for the network. Irregular-intervals pressure inputs are used to drive the SPA in different actuation sequences. The network is then iteratively trained and optimized. The demonstrated method is shown to successfully model the complex non-linear behavior of the SPA, using only the control input without any feedback sensory data as additional input to the network. In addition, the ability of the network to estimate the kinematics of SPAs with different orientation angles θ is achieved. The ESN is compared to a Long Short-Term Memory (LSTM) network that is trained on the interpolated experimental data. Both networks are then tested on Finite Element Analysis (FEA) data for other θ angle SPAs not included in the training data. This methodology could offer a general approach to modeling SPAs with varying design parameters.

7.
Environ Sci Pollut Res Int ; 29(17): 25980-25986, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35190992

RESUMO

This paper presents a modified fractional-order model (FOM) for microorganism stimulation in an up-flow anaerobic sludge blanket (UASB) reactor treating low-strength wastewater. This study aimed to examine the famine period of methanogens due to biomass accumulation in the UASB reactor over long time periods at a constant organic loading rate (OLR). This modified model can investigate the substrate biodegradation in a UASB reactor while considering substrate diffusion into biological granules during the feast and famine periods of methanogens. The Grünwald-Letnikov numerical technique was used to indicate the effect of biomass degradation on the biogas production rate and substrate biodegradation in a UASB reactor installed at Zenein Wastewater Treatment Plant (WWTP) in Giza, Egypt. Several fractional orders were applied in the dynamic model at biomass concentrations of [Formula: see text] and [Formula: see text] in the reactor bed and blanket zones, respectively. An OLR of [Formula: see text] using the calibrated kinetic parameters at [Formula: see text] was applied to comply with the experimental outcomes. The simulation results indicate that the removal efficiency of chemical oxygen demand (COD) was maintained at approximately [Formula: see text], whereas the biogas production rate declined from [Formula: see text] in the reactor bed zone due to a decline in food to microorganism (F/M) ratio from [Formula: see text] during the sludge retention time (SRT) in the UASB reactor.


Assuntos
Esgotos , Purificação da Água , Anaerobiose , Biocombustíveis , Biomassa , Reatores Biológicos , Metano/metabolismo , Esgotos/química , Eliminação de Resíduos Líquidos/métodos
8.
Micromachines (Basel) ; 13(1)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35056275

RESUMO

Nature and biological creatures are some of the main sources of inspiration for humans. Engineers have aspired to emulate these natural systems. As rigid systems become increasingly limited in their capabilities to perform complex tasks and adapt to their environment like living creatures, the need for soft systems has become more prominent due to the similar complex, compliant, and flexible characteristics they share with intelligent natural systems. This review provides an overview of the recent developments in the soft robotics field, with a focus on the underwater application frontier.

9.
IEEE Access ; 9: 21085-21093, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34786305

RESUMO

The spread of epidemics and diseases is known to exhibit chaotic dynamics; a fact confirmed by many developed mathematical models. However, to the best of our knowledge, no attempt to realize any of these chaotic models in analog or digital electronic form has been reported in the literature. In this work, we report on the efficient FPGA implementations of three different virus spreading models and one disease progress model. In particular, the Ebola, Influenza, and COVID-19 virus spreading models in addition to a Cancer disease progress model are first numerically analyzed for parameter sensitivity via bifurcation diagrams. Subsequently and despite the large number of parameters and large number of multiplication (or division) operations, these models are efficiently implemented on FPGA platforms using fixed-point architectures. Detailed FPGA design process, hardware architecture and timing analysis are provided for three of the studied models (Ebola, Influenza, and Cancer) on an Altera Cyclone IV EP4CE115F29C7 FPGA chip. All models are also implemented on a high performance Xilinx Artix-7 XC7A100TCSG324 FPGA for comparison of the needed hardware resources. Experimental results showing real-time control of the chaotic dynamics are presented.

10.
Sci Rep ; 11(1): 12076, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103571

RESUMO

Advances of soft robotics enabled better mimicking of biological creatures and closer realization of animals' motion in the robotics field. The biological creature's movement has morphology and flexibility that is problematic deportation to a bio-inspired robot. This paper aims to study the ability to mimic turtle motion using a soft pneumatic actuator (SPA) as a turtle flipper limb. SPA's behavior is simulated using finite element analysis to design turtle flipper at 22 different geometrical configurations, and the simulations are conducted on a large pressure range (0.11-0.4 Mpa). The simulation results are validated using vision feedback with respect to varying the air pillow orientation angle. Consequently, four SPAs with different inclination angles are selected to build a bio-mimetic turtle, which is tested at two different driving configurations. The nonlinear dynamics of soft actuators, which is challenging to model the motion using traditional modeling techniques affect the turtle's motion. Conclusively, according to kinematics behavior, the turtle motion path is modeled using the Echo State Network (ESN) method, one of the reservoir computing techniques. The ESN models the turtle path with respect to the actuators' rotation motion angle with maximum root-mean-square error of [Formula: see text]. The turtle is designed to enhance the robot interaction with living creatures by mimicking their limbs' flexibility and the way of their motion.

11.
Sci Rep ; 11(1): 3054, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542318

RESUMO

Soft and flexible E-skin advances are a subset of soft robotics field where the soft morphology of human skin is mimicked. The number of prototypes that conformed the use of biological tissues within the structure of soft robots-to develop "Biohybrid Soft Robots"-has increased in the last decade. However, no research was conducted to realize Biohybrid E-skin. In this paper, a novel biohybrid E-skin that provides tactile sensing is developed. The biohybrid E-skin highly mimics the human skin softness and morphology and can sense forces as low as 0.01 newton . The tactile sensing feature is augmented through the use of Aloe Vera pulp, embedded in underlying channel, where the change in its bioimpedance is related to the amount of force exerted on the E-skin surface. The biohybrid E-skin employs high biomimicry as the sensorial output is an oscillating signal similar to signals sent from the human sensing neurons to the brain. After investigating different channel geometries, types of filling tissues, and usage of two silicone materials, their frequency-force behaviour is modelled mathematically. Finally, a functional multichannel prototype "ImpEdded Skin" is developed. This prototype could efficiently detect the position of a tactile touch. This work employs the development of discrete sensing system that exhibits morphological computation that consequently enhances performance.

12.
J Adv Res ; 25: 111-123, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32922979

RESUMO

This paper introduces an intensive discussion for the dynamical model of the love triangle in both integer and fractional-order domains. Three different types of nonlinearities soft, hard, and mixed between soft and hard, are used in this study. MATLAB numerical simulations for the different three categories are presented. Also, a discussion for how the kind of personalities affects the behavior of chaotic attractors is introduced. This paper suggests some explanations for the complex love relationships depending on the impact of memory (IoM) principle. Lyapunov exponents, Kaplan-Yorke dimension, and bifurcation diagrams for three different integer-order cases show a significant dependency on system parameters. Hardware digital realization of the system is done using the Xilinx Artix-7 XC7A100T FPGA kit. Version 14.7 from the Xilinx ISE platform is used in both Verilog simulation and hardware implementation stages. The digital approach of such a system opens the door to predict the love relation after sensing the human personality. Also, this study will help in justifying more human emotions like happiness, panic, and fear accurately. Perhaps shortly, this study may combine with artificial intelligence to demonstrate Human-Computer interaction products.

13.
J Adv Res ; 18: 147-159, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30956818

RESUMO

In this paper, a new realization of the fractional capacitor (FC) using passive symmetric networks is proposed. A general analysis of the symmetric network that is independent of the internal impedance composition is introduced. Three different internal impedances are utilized in the network to realize the required response of the FC. These three cases are based on either a series RC circuit, integer Cole-impedance circuit, or both. The network size and the values of the passive elements are optimized using the minimax and least m th optimization techniques. The proposed realizations are compared with well-known realizations achieving a reasonable performance with a phase error of approximately 2 o . Since the target of this emulator circuit is the use of off-the-shelf components, Monte Carlo simulations with 5 % tolerance in the utilized elements are presented. In addition, experimental measurements of the proposed capacitors are preformed, therein showing comparable results with the simulations. The proposed realizations can be used to emulate the FC for experimental verifications of new fractional-order circuits and systems. The functionality of the proposed realizations is verified using two oscillator examples: a fractional-order Wien oscillator and a relaxation oscillator.

14.
J Adv Res ; 10: 85-98, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30034869

RESUMO

This paper presents the design of the generalized Double Humped (DH) logistic map, used for pseudo-random number key generation (PRNG). The generalized parameter added to the map provides more control on the map chaotic range. A new special map with a zooming effect of the bifurcation diagram is obtained by manipulating the generalization parameter value. The dynamic behavior of the generalized map is analyzed, including the study of the fixed points and stability ranges, Lyapunov exponent, and the complete bifurcation diagram. The option of designing any specific map is made possible through changing the general parameter increasing the randomness and controllability of the map. An image encryption algorithm is introduced based on pseudo-random sequence generation using the proposed generalized DH map offering secure communication transfer of medical MRI and X-ray images. Security analyses are carried out to consolidate system efficiency including: key sensitivity and key-space analyses, histogram analysis, correlation coefficients, MAE, NPCR and UACI calculations. System robustness against noise attacks has been proved along with the NIST test ensuring the system efficiency. A comparison between the proposed system with respect to previous works is presented.

15.
ISA Trans ; 82: 184-199, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28709651

RESUMO

Due to the non-idealities of commercial inductors, the demand for a better model that accurately describe their dynamic response is elevated. So, the fractional order models of Buck, Boost and Buck-Boost DC-DC converters are presented in this paper. The detailed analysis is made for the two most common modes of converter operation: Continuous Conduction Mode (CCM) and Discontinuous Conduction Mode (DCM). Closed form time domain expressions are derived for inductor currents, voltage gain, average current, conduction time and power efficiency where the effect of the fractional order inductor is found to be strongly present. For example, the peak inductor current at steady state increases with decreasing the inductor order. Advanced Design Systems (ADS) circuit simulations are used to verify the derived formulas, where the fractional order inductor is simulated using Valsa Constant Phase Element (CPE) approximation and Generalized Impedance Converter (GIC). Different simulation results are introduced with good matching to the theoretical formulas for the three DC-DC converter topologies under different fractional orders. A comprehensive comparison with the recently published literature is presented to show the advantages and disadvantages of each approach.

16.
J Adv Res ; 7(2): 193-208, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26966561

RESUMO

This paper summarizes the symmetric image encryption results of 27 different algorithms, which include substitution-only, permutation-only or both phases. The cores of these algorithms are based on several discrete chaotic maps (Arnold's cat map and a combination of three generalized maps), one continuous chaotic system (Lorenz) and two non-chaotic generators (fractals and chess-based algorithms). Each algorithm has been analyzed by the correlation coefficients between pixels (horizontal, vertical and diagonal), differential attack measures, Mean Square Error (MSE), entropy, sensitivity analyses and the 15 standard tests of the National Institute of Standards and Technology (NIST) SP-800-22 statistical suite. The analyzed algorithms include a set of new image encryption algorithms based on non-chaotic generators, either using substitution only (using fractals) and permutation only (chess-based) or both. Moreover, two different permutation scenarios are presented where the permutation-phase has or does not have a relationship with the input image through an ON/OFF switch. Different encryption-key lengths and complexities are provided from short to long key to persist brute-force attacks. In addition, sensitivities of those different techniques to a one bit change in the input parameters of the substitution key as well as the permutation key are assessed. Finally, a comparative discussion of this work versus many recent research with respect to the used generators, type of encryption, and analyses is presented to highlight the strengths and added contribution of this paper.

17.
J Adv Res ; 5(2): 157-64, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25685483

RESUMO

This paper aims to generalize the design of continuous-time filters to the fractional domain with different orders and validates the theoretical results with two different CCII based filters. In particular, the proposed study introduces the generalized formulas for the previous fractional-order analysis of equal orders. The fractional-order filters enhance the design flexibility and prove that the integer-order performance is a very narrow subset from the fractional-order behavior due to the extra degrees of freedom. The general fundamentals of these filters are presented by calculating the maximum and minimum frequencies, the half power frequency and the right phase frequency which are considered a critical issue for the filter design. Different numerical solutions for the generalized fractional order low pass filters with two different fractional order elements are introduced and verified by the circuit simulations of two fractional-order filters: Kerwin-Huelsman-Newcomb (KHN) and Tow-Tomas CCII-based filters, showing great matching.

18.
J Adv Res ; 4(2): 163-71, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25685414

RESUMO

Recently, conventional logistic maps have been used in different vital applications like modeling and security. However, unfortunately the conventional logistic maps can tolerate only one changeable parameter. In this paper, three different generalized logistic maps are introduced with arbitrary powers which can be reduced to the conventional logistic map. The added parameter (arbitrary power) increases the degree of freedom of each map and gives us a versatile response that can fit many applications. Therefore, the conventional logistic map is considered only a special case from each proposed map. This new parameter increases the flexibility of the system, and illustrates the performance of the conventional system within any required neighborhood. Many cases will be illustrated showing the effect of the arbitrary power and the equation parameter on the number of equilibrium points, their locations, stability conditions, and bifurcation diagrams up to the chaotic behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...