Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298433

RESUMO

Pulmonary fibrosis (PF) is a life-threatening disorder that severely disrupts normal lung architecture and function, resulting in severe respiratory failure and death. It has no definite treatment. Empagliflozin (EMPA), a sodium-glucose cotransporter 2 (SGLT2) inhibitor, has protective potential in PF. However, the mechanisms underlying these effects require further elucidation. Therefore, this study aimed to evaluate the ameliorative effect of EMPA against bleomycin (BLM)-induced PF and the potential mechanisms. Twenty-four male Wister rats were randomly divided into four groups: control, BLM treated, EMPA treated, and EMPA+BLM treated. EMPA significantly improved the histopathological injuries illustrated by both hematoxylin and eosin and Masson's trichrome-stained lung tissue sections, as confirmed by electron microscopic examination. It significantly reduced the lung index, hydroxyproline content, and transforming growth factor ß1 levels in the BLM rat model. It had an anti-inflammatory effect, as evidenced by a decrease in the inflammatory cytokines' tumor necrosis factor alpha and high mobility group box 1, inflammatory cell infiltration into the bronchoalveolar lavage fluid, and the CD68 immunoreaction. Furthermore, EMPA mitigated oxidative stress, DNA fragmentation, ferroptosis, and endoplasmic reticulum stress, as evidenced by the up-regulation of nuclear factor erythroid 2-related factor expression, heme oxygenase-1 activity, glutathione peroxidase 4 levels, and a decrease in C/EBP homologous protein levels. This protective potential could be explained on the basis of autophagy induction via up-regulating lung sestrin2 expression and the LC3 II immunoreaction observed in this study. Our findings indicated that EMPA protected against BLM-induced PF-associated cellular stress by enhancing autophagy and modulating sestrin2/adenosine monophosphate-activated protein kinase/nuclear factor erythroid 2-related factor 2/heme oxygenase 1 signaling.


Assuntos
Ferroptose , Fibrose Pulmonar , Ratos , Masculino , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Bleomicina/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ratos Wistar , Pulmão/patologia
4.
Anat Rec (Hoboken) ; 306(2): 422-436, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35451203

RESUMO

Sofosbuvir is a novel drug candidate for the treatment of hepatitis C viral infection; however, vision loss is one of its growing adverse effects. Saffron is a natural biomolecule with a high antioxidant potential that has been efficiently used in some diseases caused by oxidative stress. This study evaluated Sofosbuvir's neurodegenerative effect on the retina of albino rat and examined the potential protective role of saffron aqueous extract. Twenty-one adult male albino rats were randomly divided into three groups: Control, Sofosbuvir-treated (41.1 mg/kg /day for 6 weeks), and Sofosbuvir + Saffron co-treated groups. Retinal specimens were biochemically analyzed for malondialdehyde (MDA), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) levels. In addition, light and transmission electron microscopic examination, as well as immunohistochemical staining for Caspase-3, COX-2, and GFAP were performed. Sofosbuvir treatment caused a significant increase in retinal MDA, IL-6, and TNF-α levels coupling with a significant decrease in retinal total antioxidant capacity level. Histopathological findings revealed disturbed retinal architecture, detached pigment epithelium, vacuolated photoreceptors, in addition to a significant decrease in the thicknesses of both outer and inner nuclear layers, and the number of ganglionic cells. Ultrastructural examination revealed extensive degenerative changes in all retinal layers. Caspase-3, COX-2, and GFAP immunohistochemical expressions were significantly increased. Meanwhile, concomitant treatment with Saffron significantly improved retinal redox status, inflammation, histological, and ultrastructural parameters. Saffron may protect the retina from the hazardous effects of Sofosbuvir. Saffron could be used as an adjuvant therapy to protect patients receiving Sofosbuvir from retinal damage.


Assuntos
Antioxidantes , Crocus , Humanos , Adulto , Masculino , Ratos , Antioxidantes/farmacologia , Crocus/química , Crocus/metabolismo , Caspase 3/metabolismo , Sofosbuvir/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Ciclo-Oxigenase 2/metabolismo , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Retina/metabolismo , Estresse Oxidativo , Animais
5.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498902

RESUMO

Doxorubicin (DOX) is an anticancer antibiotic which has various effects in human cancers. It is one of the commonly known causes of drug-induced nephrotoxicity, which results in acute renal injury. Adrenomedullin (ADM), a vasodilator peptide, is widely distributed in many tissues and has potent protective effects. Therefore, the current study aimed to examine the protective potential mechanisms of ADM against DOX-induced nephrotoxicity. A total of 28 male Wistar rats were randomized into four groups: control group, doxorubicin group (15 mg/kg single intraperitoneal injection of DOX), adrenomedullin + doxorubicin group (12 µg/kg/day intraperitoneal injection of ADM) 3 days prior to DOX injection and continuing for 14 days after the model was established, and adrenomedullin group. Kidney function biomarkers, oxidative stress markers, and inflammatory mediators (TNF-α, NLRP3, IL-1ß, and IL-18) were assessed. The expressions of gasdermin D and ASC were assessed by real-time PCR. Furthermore, the abundances of caspase-1 (p20), Bcl-2, and Bax immunoreactivity were evaluated. ADM administration improved the biochemical parameters of DOX-induced nephrotoxicity, significantly reduced oxidative damage markers and inflammatory mediators, and suppressed both apoptosis and pyroptosis. These results were confirmed by the histopathological findings and revealed that ADM's antioxidant, anti-inflammatory, anti-apoptotic, and anti-pyroptotic properties may have prospective applications in the amelioration of DOX-induced nephrotoxicity.


Assuntos
Adrenomedulina , Insuficiência Renal , Animais , Masculino , Ratos , Adrenomedulina/farmacologia , Apoptose , Doxorrubicina/toxicidade , Inflamação , Mediadores da Inflamação , Estresse Oxidativo , Piroptose , Ratos Wistar , Insuficiência Renal/induzido quimicamente , Insuficiência Renal/tratamento farmacológico
6.
J. physiol. biochem ; 78(4): 897–913, nov. 2022. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-216180

RESUMO

The prevalence of obesity and its associated metabolic disorders, along with their healthcare costs, is rising exponentially. Irisin, an adipomyokine, may serve as a critical cross-organ messenger, linking skeletal muscle with adipose tissue and the liver to integrate the energy homeostasis under diet-induced obesity. We aimed to explore the putative role of irisin in the protection against obesity in a postmenopausal rat model by modulating energy expenditure (EE). Bilateral ovariectomy (OVX) was performed. After 3 weeks of recovery, the OVX rats were classified according to their dietary protocol into rats maintained on normal diets (ND) (OVX) or high-fat diet (HFD) groups. The HFD-fed animals were equally divided into OVX/HFD, or irisin-treated OVX/HFD groups. Sham rats, maintained on ND, were selected as the control group. We evaluated anthropometric, EE, and molecular biomarkers of browning and thermogenesis in inguinal white adipose tissue and skeletal muscle, and the activity of the proteins related to mitochondrial long chain fatty acid transport, oxidation, and glycolysis. HFD of OVX further deteriorated the disturbed glucose homeostasis, lipid profile, and the reduced irisin, thermogenic parameters in adipose tissue and skeletal muscle, and EE. Irisin treatment improved the lipid profile and insulin resistance. That was associated with reduced hepatic gluconeogenic enzyme activities and restored hepatic glycogen content. Irisin reduced ectopic lipid infiltration. Irisin augmented EE by activating non-shivering thermogenesis in muscle and adipose tissues and decreasing metabolic efficiency. Our experimental evidence suggests irisin’s use as a potential thermogenic agent, therapeutically targeting obesity in postmenopausal patients. (AU)


Assuntos
Animais , Ratos , Adiposidade , Condicionamento Físico Animal , Tolerância ao Exercício , Obesidade/metabolismo , Termogênese , Fibronectinas/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Tecido Adiposo Marrom/metabolismo
7.
J Physiol Biochem ; 78(4): 897-913, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35996069

RESUMO

The prevalence of obesity and its associated metabolic disorders, along with their healthcare costs, is rising exponentially. Irisin, an adipomyokine, may serve as a critical cross-organ messenger, linking skeletal muscle with adipose tissue and the liver to integrate the energy homeostasis under diet-induced obesity. We aimed to explore the putative role of irisin in the protection against obesity in a postmenopausal rat model by modulating energy expenditure (EE). Bilateral ovariectomy (OVX) was performed. After 3 weeks of recovery, the OVX rats were classified according to their dietary protocol into rats maintained on normal diets (ND) (OVX) or high-fat diet (HFD) groups. The HFD-fed animals were equally divided into OVX/HFD, or irisin-treated OVX/HFD groups. Sham rats, maintained on ND, were selected as the control group. We evaluated anthropometric, EE, and molecular biomarkers of browning and thermogenesis in inguinal white adipose tissue and skeletal muscle, and the activity of the proteins related to mitochondrial long chain fatty acid transport, oxidation, and glycolysis. HFD of OVX further deteriorated the disturbed glucose homeostasis, lipid profile, and the reduced irisin, thermogenic parameters in adipose tissue and skeletal muscle, and EE. Irisin treatment improved the lipid profile and insulin resistance. That was associated with reduced hepatic gluconeogenic enzyme activities and restored hepatic glycogen content. Irisin reduced ectopic lipid infiltration. Irisin augmented EE by activating non-shivering thermogenesis in muscle and adipose tissues and decreasing metabolic efficiency. Our experimental evidence suggests irisin's use as a potential thermogenic agent, therapeutically targeting obesity in postmenopausal patients. Irisin modulates the non-shivering thermogenesis in skeletal muscle and adipose tissue in postmenopausal model.


Assuntos
Adiposidade , Tolerância ao Exercício , Fibronectinas , Obesidade , Condicionamento Físico Animal , Termogênese , Animais , Feminino , Ratos , Tecido Adiposo Marrom/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fibronectinas/metabolismo , Lipídeos , Camundongos Endogâmicos C57BL , Células Musculares/metabolismo , Obesidade/metabolismo , Pós-Menopausa
8.
Saudi J Biol Sci ; 29(4): 2187-2198, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531231

RESUMO

Ciprofloxacin (CPX), is a fluoroquinolone antibiotic used to treat a number of gram-negative and gram-positive bacterial infections. Ciprofloxacin can cause severe side effects, ranging from tendon problems, nerve damage, to serious mood or behavior changes. The purpose of this study was to investigate how ciprofloxacin affects gastric cell lines in rats with a distinctive emphasis on physiological, histopathological, and bacteriological changes. Male albino rats (n = 21) were distributed into three groups; control, CPX, and CPX-withdrawal groups. The treated rats were given CPX tablets (12.5 mg/kg) dissolved in carboxymethyl cellulose (CMC) 0.5% orally once daily via gavage for sixty consecutive days. Control rats received only the vehicle. The withdrawal group was treated for 60 days and the drug was withdrawn for another sixty days. After completion of the experiment, all rats were sacrificed and gastric tissues were treated for light, immunohistochemical, and scanning electron microscopic examination. Image J software was used to measure immune-labeled gastric epithelial cells. Blood samples were also collected for H. Pylori immunoglobulins IgM, IgA, and IgG. Results showed that treated rats acquired significantly strongly positive tumor necrosis factor (TNFα) and significant reduction of serum level of H. pylori IgM, IgA, and IgG in all the study groups. It could be concluded that prolonged oral CPX administration to albino rats changes the gastric mucosal architecture and bacteriology.

9.
Neurochem Res ; 47(6): 1664-1678, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35235140

RESUMO

Geraniol (GE), an important ingredient in several essential oils, displayed pleiotropic biological activities through targeting multiple signaling cascades. In the current study, we aimed to examine the protective effect of GE on D-galactose (D-gal) induced cognitive impairment and explore the underlying mechanisms. Forty male Wistar rats (8 weeks old) were randomly categorized into 4 groups; Group I (saline + vehicle [edible oil]), group II (saline + geraniol) (100 mg/kg/day orally), group III (D-galactose) (100 mg/kg/day subcutaneously injected), and group IV (D-galactose + geraniol). Behavioral impairments were evaluated. Brain levels of malondialdehyde (MDA) and reduced glutathione (GSH) as well as superoxide dismutase (SOD) and acetylcholinesterase (AchE) activities were estimated. The levels of inflammatory markers [tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1ß, IL-6, and nuclear factor kappa beta (NF-kß)], endoplasmic reticulum stress sensors [inositol requiring protein 1(IRE1) and protein kinase RNA-like endoplasmic reticulum kinase (PERK)], brain-derived neurotrophic factor (BDNF), and mitogen-activated protein kinases (MAPK) pathway were measured by ELISA. Also, hippocampal histopathological assessment and immunohistochemical analysis of glial fibrillary acidic protein (GFAP) and caspase-3 were performed. Glucose regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) mRNA expression and protein levels were assessed. GE effectively ameliorated aging-related memory impairment through increasing GSH, BDNF, Ach levels, and SOD activity. Additionally, GE treatment caused a decrease in the levels of MDA, inflammatory mediators, and ER stress sensors as well as the AchE activity together with concomitant down-regulation of GRP78 and CHOP mRNA expression. Moreover, GE improved neuronal architecture and rat's spatial memory; this is evidenced by the shortened escape latency and increased platform crossing number. Therefore, GE offers a unique pharmacological approach for aging-associated neurodegenerative disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Galactose , Acetilcolinesterase , Monoterpenos Acíclicos , Animais , Galactose/toxicidade , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/patologia , Estresse Oxidativo , RNA Mensageiro , Ratos , Ratos Wistar , Superóxido Dismutase
10.
Br J Pharmacol ; 179(13): 3363-3381, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35064582

RESUMO

BACKGROUND AND PURPOSE: Varicocele is a leading cause of male infertility. Melatonin is a highly pleiotropic neurohormone. We aimed to characterize the melatonin epigenetic potential in varicocele and the involved molecular mechanisms. EXPERIMENTAL APPROACH: Fifty-two male albino rats were randomly divided into four groups (13 rats each): control (I), melatonin (II), varicocele (III) and melatonin treated varicocele (IV) groups. Left varicocele was induced by partial left renal vein ligation. Reproductive hormones, epididymal sperm functional parameters, testicular 3/17 ß-hydroxysteroid dehydrogenases, antioxidant enzymes, malondialdehyde, nicotinamide adenine dinucleotide phosphate oxidase, 8-hydroxy-2'-deoxyguanosine and histopathological/Johnsen's score were evaluated. Flow cytometry and Comet were carried out to explore extent of sperm and testicular DNA damage. Testicular expression of silent information regulator 1 (SIRT1), forkhead transcription factors-class O (type1) (FOXO1), tumour suppressor gene, P53, cation channels of sperm (CatSper) and steroidogenic acute regulatory protein was evaluated by western blot technique. Testicular expression of Bcl-2 and its associated X protein and nuclear factor kappa-light-chain-enhancer of activated B cells were assayed by immunohistochemical staining. Testicular miR-34a expression was quantified by quantitative reverse transcription-polymerase chain reaction. KEY RESULTS: The varicocele induced testicular histological injury, enhanced oxidative stress, P53-mediated apoptosis, DNA damage and increased testicular miR-34a expression paralleled with down-regulated SIRT1/FOXO axis. Melatonin treatment of varicocele rats displayed antioxidant/anti-apoptotic efficacy and improved reproductive hormones axis, CatSper expression and fertility parameters. MiR-34a/SIRT1/FOXO1 epigenetic axis integrates testicular melatonin mediated intracellular transduction cascades in varicocele. CONCLUSION AND IMPLICATIONS: Melatonin can be used as an adjuvant therapy to improve varicocele and its complication.


Assuntos
Melatonina , MicroRNAs , Sirtuína 1 , Varicocele , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Epigênese Genética , Fertilidade , Masculino , Melatonina/farmacologia , MicroRNAs/metabolismo , Estresse Oxidativo , Ratos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Varicocele/metabolismo , Varicocele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...