Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 16384, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385476

RESUMO

An ensemble Kalman filter reanalysis has been archived in the Research Data Archive at the National Center for Atmospheric Research. It used a CAM6 configuration of the Community Earth System Model (CESM), several million observations per day, and the Data Assimilation Research Testbed (DART). The data saved from this global, [Formula: see text] resolution, 80 member ensemble span 2011-2019. They include ensembles of: sub-daily, real world, atmospheric forcing for use by all of the nonatmospheric models of CESM; weekly, CAM6, restart file sets; 6 hourly, prior hindcast estimates of the assimilated observations; 6 hourly, land model, plant growth variables, and 6 hourly, ensemble mean, gridded, atmospheric analyses. This data can be used for hindcast studies and data assimilation using component models of CESM; CAM6, CLM5, CICE5, POP2. MOM6, MOSART, and CISM; and non-CESM Earth system models. This large dataset (~ 120 Tb) has a unique combination of a large ensemble, high frequency, and multiyear time span, which provides opportunities for robust statistical analysis and use as a machine learning training dataset.

2.
Atmos Chem Phys ; 20(23): 14617-14647, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33414818

RESUMO

Global coupled chemistry-climate models underestimate carbon monoxide (CO) in the Northern Hemisphere, exhibiting a pervasive negative bias against measurements peaking in late winter and early spring. While this bias has been commonly attributed to underestimation of direct anthropogenic and biomass burning emissions, chemical production and loss via OH reaction from emissions of anthropogenic and biogenic volatile organic compounds (VOCs) play an important role. Here we investigate the reasons for this underestimation using aircraft measurements taken in May and June 2016 from the Korea-United States Air Quality (KORUS-AQ) experiment in South Korea and the Air Chemistry Research in Asia (ARIAs) in the North China Plain (NCP). For reference, multispectral CO retrievals (V8J) from the Measurements of Pollution in the Troposphere (MOPITT) are jointly assimilated with meteorological observations using an ensemble adjustment Kalman filter (EAKF) within the global Community Atmosphere Model with Chemistry (CAM-Chem) and the Data Assimilation Research Testbed (DART). With regard to KORUS-AQ data, CO is underestimated by 42% in the control run and by 12% with the MOPITT assimilation run. The inversion suggests an underestimation of anthropogenic CO sources in many regions, by up to 80% for northern China, with large increments over the Liaoning Province and the North China Plain (NCP). Yet, an often-overlooked aspect of these inversions is that correcting the underestimation in anthropogenic CO emissions also improves the comparison with observational O3 datasets and observationally constrained box model simulations of OH and HO2. Running a CAM-Chem simulation with the updated emissions of anthropogenic CO reduces the bias by 29% for CO, 18% for ozone, 11% for HO2, and 27% for OH. Longer-lived anthropogenic VOCs whose model errors are correlated with CO are also improved, while short-lived VOCs, including formaldehyde, are difficult to constrain solely by assimilating satellite retrievals of CO. During an anticyclonic episode, better simulation of O3, with an average underestimation of 5.5 ppbv, and a reduction in the bias of surface formaldehyde and oxygenated VOCs can be achieved by separately increasing by a factor of 2 the modeled biogenic emissions for the plant functional types found in Korea. Results also suggest that controlling VOC and CO emissions, in addition to widespread NO x controls, can improve ozone pollution over East Asia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...