Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 6: 936, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26617612

RESUMO

An understanding of the adaptations made by plants in their nitrogen (N) uptake systems in response to reduced N supply is important to the development of cereals with enhanced N uptake efficiency (NUpE). Twenty seven diverse genotypes of maize (Zea mays, L.) were grown in hydroponics for 3 weeks with limiting or adequate N supply. Genotypic response to N was assessed on the basis of biomass characteristics and the activities of the nitrate ([Formula: see text]) and ammonium ([Formula: see text]) high-affinity transport systems. Genotypes differed greatly for the ability to maintain biomass with reduced N. Although, the N response in underlying biomass and N transport related characteristics was less than that for biomass, there were clear relationships, most importantly, lines that maintained biomass at reduced N maintained net N uptake with no change in size of the root relative to the shoot. The root uptake capacity for both [Formula: see text] and [Formula: see text] increased with reduced N. Transcript levels of putative [Formula: see text] and [Formula: see text] transporter genes in the root tissue of a subset of the genotypes revealed that predominately ZmNRT2 transcript levels responded to N treatments. The correlation between the ratio of transcripts of ZmNRT2.2 between the two N levels and a genotype's ability to maintain biomass with reduced N suggests a role for these transporters in enhancing NUpE. The observed variation in the ability to capture N at low N provides scope for both improving NUpE in maize and also to better understand the N uptake system in cereals.

2.
BMC Plant Biol ; 14: 27, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24423166

RESUMO

BACKGROUND: The elongating maize internode represents a useful system for following development of cell walls in vegetative cells in the Poaceae family. Elongating internodes can be divided into four developmental zones, namely the basal intercalary meristem, above which are found the elongation, transition and maturation zones. Cells in the basal meristem and elongation zones contain mainly primary walls, while secondary cell wall deposition accelerates in the transition zone and predominates in the maturation zone. RESULTS: The major wall components cellulose, lignin and glucuronoarabinoxylan (GAX) increased without any abrupt changes across the elongation, transition and maturation zones, although GAX appeared to increase more between the elongation and transition zones. Microarray analyses show that transcript abundance of key glycosyl transferase genes known to be involved in wall synthesis or re-modelling did not match the increases in cellulose, GAX and lignin. Rather, transcript levels of many of these genes were low in the meristematic and elongation zones, quickly increased to maximal levels in the transition zone and lower sections of the maturation zone, and generally decreased in the upper maturation zone sections. Genes with transcript profiles showing this pattern included secondary cell wall CesA genes, GT43 genes, some ß-expansins, UDP-Xylose synthase and UDP-Glucose pyrophosphorylase, some xyloglucan endotransglycosylases/hydrolases, genes involved in monolignol biosynthesis, and NAM and MYB transcription factor genes. CONCLUSIONS: The data indicated that the enzymic products of genes involved in cell wall synthesis and modification remain active right along the maturation zone of elongating maize internodes, despite the fact that corresponding transcript levels peak earlier, near or in the transition zone.


Assuntos
Parede Celular/metabolismo , Zea mays/metabolismo , Celulose/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Xilanos/metabolismo
4.
BMC Genomics ; 12: 336, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21718468

RESUMO

BACKGROUND: Expression QTL analyses have shed light on transcriptional regulation in numerous species of plants, animals, and yeasts. These microarray-based analyses identify regulators of gene expression as either cis-acting factors that regulate proximal genes, or trans-acting factors that function through a variety of mechanisms to affect transcript abundance of unlinked genes. RESULTS: A hydroponics-based genetical genomics study in roots of a Zea mays IBM2 Syn10 double haploid population identified tens of thousands of cis-acting and trans-acting eQTL. Cases of false-positive eQTL, which results from the lack of complete genomic sequences from both parental genomes, were described. A candidate gene for a trans-acting regulatory factor was identified through positional cloning. The unexpected regulatory function of a class I glutamine amidotransferase controls the expression of an ABA 8'-hydroxylase pseudogene. CONCLUSIONS: Identification of a candidate gene underlying a trans-eQTL demonstrated the feasibility of eQTL cloning in maize and could help to understand the mechanism of gene expression regulation. Lack of complete genome sequences from both parents could cause the identification of false-positive cis- and trans-acting eQTL.


Assuntos
Genoma , Locos de Características Quantitativas , Zea mays/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Haploidia , Hidroponia , Proteínas de Plantas , Raízes de Plantas/genética
5.
Plant Physiol ; 156(4): 2155-71, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21697508

RESUMO

Changes in cell wall polysaccharides, transcript abundance, metabolite profiles, and hormone concentrations were monitored in the upper and lower regions of maize (Zea mays) pulvini in response to gravistimulation, during which maize plants placed in a horizontal position returned to the vertical orientation. Heteroxylan levels increased in the lower regions of the pulvini, together with lignin, but xyloglucans and heteromannan contents decreased. The degree of substitution of heteroxylan with arabinofuranosyl residues decreased in the lower pulvini, which exhibited increased mechanical strength as the plants returned to the vertical position. Few or no changes in noncellulosic wall polysaccharides could be detected on the upper side of the pulvinus, and crystalline cellulose content remained essentially constant in both the upper and lower pulvinus. Microarray analyses showed that spatial and temporal changes in transcript profiles were consistent with the changes in wall composition that were observed in the lower regions of the pulvinus. In addition, the microarray analyses indicated that metabolic pathways leading to the biosynthesis of phytohormones were differentially activated in the upper and lower regions of the pulvinus in response to gravistimulation. Metabolite profiles and measured hormone concentrations were consistent with the microarray data, insofar as auxin, physiologically active gibberellic acid, and metabolites potentially involved in lignin biosynthesis increased in the elongating cells of the lower pulvinus.


Assuntos
Parede Celular/metabolismo , Gravitação , Pulvínulo/citologia , Pulvínulo/fisiologia , Estresse Fisiológico , Zea mays/citologia , Zea mays/fisiologia , Fenômenos Biomecânicos/fisiologia , Celulose/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Gravitropismo , Lignina/metabolismo , Metabolômica , Modelos Biológicos , Nucleotídeos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reguladores de Crescimento de Plantas/metabolismo , Caules de Planta/fisiologia , Polissacarídeos/metabolismo , Pulvínulo/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Xilanos/metabolismo , Zea mays/enzimologia , Zea mays/genética
6.
Plant Physiol ; 153(4): 1716-28, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20530215

RESUMO

The barley (Hordeum vulgare) brittle stem mutants, fs2, designated X054 and M245, have reduced levels of crystalline cellulose compared with their parental lines Ohichi and Shiroseto. A custom-designed microarray, based on long oligonucleotide technology and including genes involved in cell wall metabolism, revealed that transcript levels of very few genes were altered in the elongation zone of stem internodes, but these included a marked decrease in mRNA for the HvCesA4 cellulose synthase gene of both mutants. In contrast, the abundance of several hundred transcripts changed in the upper, maturation zones of stem internodes, which presumably reflected pleiotropic responses to a weakened cell wall that resulted from the primary genetic lesion. Sequencing of the HvCesA4 genes revealed the presence of a 964-bp solo long terminal repeat of a Copia-like retroelement in the first intron of the HvCesA4 genes of both mutant lines. The retroelement appears to interfere with transcription of the HvCesA4 gene or with processing of the mRNA, and this is likely to account for the lower crystalline cellulose content and lower stem strength of the mutants. The HvCesA4 gene maps to a position on chromosome 1H of barley that coincides with the previously reported position of fs2.


Assuntos
Glucosiltransferases/genética , Hordeum/genética , Proteínas de Plantas/genética , Retroelementos , Parede Celular/química , Celulose/análise , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Genes de Plantas , Glucosiltransferases/metabolismo , Hordeum/enzimologia , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Proteínas de Plantas/metabolismo , RNA de Plantas/genética
7.
Curr Opin Plant Biol ; 13(2): 174-80, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20089441

RESUMO

Increased availability of high throughput genotyping technology together with advances in DNA sequencing and in the development of statistical methodology appropriate for genome-wide association scan mapping in presence of considerable population structure contributed to the increased interest association mapping in plants. While most published studies in crop species are candidate gene-based, genome-wide studies are on the increase. New types of populations providing for increased resolution and power of detection of modest-size effects and for the analysis of epistatic interactions have been developed. Classical biparental mapping remains the method of choice for mapping the effects of alleles rare in germplasm collections, such as some disease resistance genes or alleles introgressed from exotic germplasm.


Assuntos
Agricultura/métodos , Produtos Agrícolas/genética , Estudo de Associação Genômica Ampla/métodos , Epistasia Genética , Genoma de Planta/genética , Fenótipo , Reprodutibilidade dos Testes
8.
Genetics ; 178(4): 2133-43, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18430939

RESUMO

We investigated DNA sequence variation in 72 candidate genes in maize landraces and the wild ancestor of maize, teosinte. The candidate genes were chosen because they exhibit very low sequence diversity among maize inbreds and have sequence homology to known regulatory genes. We observed signatures of selection in 17 candidate genes, indicating that they were potential targets of artificial selection during domestication. In addition, 21 candidate genes were identified as potential targets of natural selection in teosinte. A comparison of the proportion of selected genes between our regulatory genes and genes unfiltered for their potential function (but also with very low sequence diversity among maize inbreds) provided some weak evidence that regulatory genes are overrepresented among selected genes. We detected no significant association between the positions of genes identified as potential targets of selection during domestication and quantitative trait loci (QTL) responsible for maize domestication traits. However, a subset of these genes, those identified by sequence homology as kinase/phosphatase genes, significantly cluster with the domestication QTL. We also analyzed expression profiles of genes in distinct maize tissues and observed that domestication genes are expressed on average at a significantly higher level than neutral genes in reproductive organs, including kernels.


Assuntos
Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas , Genes Reguladores , Polimorfismo Genético/genética , Zea mays/genética , Sequência de Bases , Genes de Plantas , Modelos Genéticos , Especificidade de Órgãos , Análise de Componente Principal , Locos de Características Quantitativas/genética , Seleção Genética , Análise de Sequência de DNA
9.
Proc Natl Acad Sci U S A ; 104(27): 11376-81, 2007 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-17595297

RESUMO

Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positional cloning and association mapping, we resolved the major flowering-time quantitative trait locus, Vegetative to generative transition 1 (Vgt1), to an approximately 2-kb noncoding region positioned 70 kb upstream of an Ap2-like transcription factor that we have shown to be involved in flowering-time control. Vgt1 functions as a cis-acting regulatory element as indicated by the correlation of the Vgt1 alleles with the transcript expression levels of the downstream gene. Additionally, within Vgt1, we identified evolutionarily conserved noncoding sequences across the maize-sorghum-rice lineages. Our results support the notion that changes in distant cis-acting regulatory regions are a key component of plant genetic adaptation throughout breeding and evolution.


Assuntos
Sequência Conservada , DNA Intergênico , Topos Floridos/genética , Locos de Características Quantitativas , Zea mays/genética , Sequência de Bases , Genoma de Planta , Dados de Sequência Molecular , Oryza/genética , Plantas Geneticamente Modificadas , Sorghum/genética , Fatores de Tempo
10.
Plant Physiol ; 143(1): 172-87, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17098858

RESUMO

Plant cell shape is achieved through a combination of oriented cell division and cell expansion and is defined by the cell wall. One of the genes identified to influence cell expansion in the Arabidopsis (Arabidopsis thaliana) root is the COBRA (COB) gene that belongs to a multigene family. Three members of the AtCOB gene family have been shown to play a role in specific types of cell expansion or cell wall biosynthesis. Functional orthologs of one of these genes have been identified in maize (Zea mays) and rice (Oryza sativa; Schindelman et al., 2001; Li et al., 2003; Brown et al., 2005; Persson et al., 2005; Ching et al., 2006; Jones et al., 2006). We present the maize counterpart of the COB gene family and the COB gene superfamily phylogeny. Most of the genes belong to a family with two main clades as previously identified by analysis of the Arabidopsis family alone. Within these clades, however, clear differences between monocot and eudicot family members exist, and these are analyzed in the context of Type I and Type II cell walls in eudicots and monocots. In addition to changes at the sequence level, gene regulation of this family in a eudicot, Arabidopsis, and a monocot, maize, is also characterized. Gene expression is analyzed in a multivariate approach, using data from a number of sources, including massively parallel signature sequencing libraries, transcriptional reporter fusions, and microarray data. This analysis has revealed that the expression of Arabidopsis and maize COB gene family members is highly developmentally and spatially regulated at the tissue and cell type-specific level, that gene superfamily members show overlapping and unique expression patterns, and that only a subset of gene superfamily members act in response to environmental stimuli. Regulation of expression of the Arabidopsis COB gene family members has highly diversified in comparison to that of the maize COB gene superfamily members. We also identify BRITTLE STALK 2-LIKE 3 as a putative ortholog of AtCOB.


Assuntos
Evolução Molecular , Família Multigênica , Proteínas de Plantas/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Parede Celular/fisiologia , Análise por Conglomerados , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glucuronidase/análise , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Dados de Sequência Molecular , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Alinhamento de Sequência , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
11.
Funct Integr Genomics ; 2(1-2): 13-27, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12021847

RESUMO

We are using DNA microarray-based gene expression profiling to classify temporal patterns of gene expression during the development of maize embryos, to understand mRNA-level control of embryogenesis and to dissect metabolic pathways and their interactions in the maize embryo. Genes involved in carbohydrate, fatty acid, and amino acid metabolism, the tricarboxylic acid (TCA) cycle, glycolysis, the pentose phosphate pathway, embryogenesis, membrane transport, signal transduction, cofactor biosynthesis, photosynthesis, oxidative phosphorylation and electron transfer, as well as 600 random complementary DNA (cDNA) clones from maize embryos, were arrayed on glass slides. DNA arrays were hybridized with fluorescent dye-labeled cDNA probes synthesized from kernel and embryo poly(A)(+)RNA from different stages of maize seed development. Several characteristic developmental patterns of expression were identified and correlated with gene function. Patterns of coordinated gene expression in the TCA cycle and glycolysis were analyzed in detail. The steady state level of poly(A)(+) RNA for many genes varies dramatically during maize embryo development. Expression patterns of genes coding for enzymes of fatty acid biosynthesis and glycolysis are coordinately regulated during development. Genes of unknown function may by assigned a hypothetical role based on their patterns of expression resembling well characterized genes. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s10142-002-0046-6.


Assuntos
Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Zea mays/embriologia , Northern Blotting , Carbocianinas , Ciclo do Ácido Cítrico/genética , Sondas de DNA , DNA Complementar , Etiquetas de Sequências Expressas , Ácidos Graxos/biossíntese , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Frequência do Gene , Biblioteca Gênica , Glicólise/genética , Folhas de Planta/genética , Raízes de Plantas/genética , Zea mays/genética
12.
Brief Funct Genomic Proteomic ; 1(1): 80-94, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15251068

RESUMO

The year 2001 may well be called the Year of the Human Genome. Less in the limelight, but equally exciting for plant scientists, is the rapid progress in plant genomics. With relatively modest resources, a lot has been achieved. The Arabidopsis genomic sequence (125 megabases [Mb]) is essentially finished, and rice sequencing is progressing rapidly. For many species, expressed sequence tag (EST) resources are plentiful, allowing broad inter-specific comparisons. At the same time, development of integrated physical-genetic maps for large-genome crop species is not progressing as rapidly as desired, while resources for the complete sequencing of these crops are not likely to become available. Some important plant genomes are so large that their complete sequencing may not be practical for many years. Significant plant genome research is concentrated in industry, and not freely available, creating some frustration in the academic community. Growing interest is anticipated in the development of metabolic profiling technologies, RNA profiling, proteomics and integrated systems approaches to plant biology.


Assuntos
Genoma de Planta , Genômica , Plantas/genética , Biologia Computacional , Elementos de DNA Transponíveis , Etiquetas de Sequências Expressas , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...