Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(6): 1349-1356.e4, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38428415

RESUMO

Invasive populations often have lower genetic diversity relative to the native-range populations from which they derive.1,2 Despite this, many biological invaders succeed in their new environments, in part due to rapid adaptation.3,4,5,6 Therefore, the role of genetic bottlenecks in constraining the adaptation of invaders is debated.7,8,9,10 Here, we use whole-genome resequencing of samples from a 10-year time-series dataset, representing the natural invasion of the Asian honey bee (Apis cerana) in Australia, to investigate natural selection occurring in the aftermath of a founding event. We find that Australia's A. cerana population was founded by as few as one colony, whose arrival was followed by a period of rapid population expansion associated with an increase of rare variants.11 The bottleneck resulted in a steep loss of overall genetic diversity, yet we nevertheless detected loci with signatures of positive selection during the first years post-invasion. When we investigated the origin of alleles under selection, we found that selection acted primarily on the variation introduced by founders and not on the variants that arose post-invasion by mutation. In all, our data highlight that selection on standing genetic variation can occur in the early years post-invasion, even where founding bottlenecks are severe.


Assuntos
Variação Genética , Genética Populacional , Animais , Abelhas , Seleção Genética , Análise de Sequência de DNA , Mutação
2.
Insects ; 13(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36421957

RESUMO

Apis cerana and Apis mellifera are important honey bee species in Asia. A. cerana populations are distributed from a cold, sharply continental climate in the north to a hot, subtropical climate in the south. Due to the Sacbrood virus, almost all A. cerana populations in Asia have declined significantly in recent decades and have recovered over the past five years. This could lead to a shift in the gene pool of local A. cerana populations that could affect their sustainability and adaptation. It was assumed that adaptation of honey bees could be observed by comparative analysis of the sequences of genes involved in development, labor division, and caste differentiation, such as the gene Vitellogenin VG. The VG gene nucleotide sequences were used to assess the genetic structure and signatures of adaptation of local populations of A. cerana from Korea, Russia, Japan, Nepal, and China. A. mellifera samples from India and Poland were used as the outgroup. The signatures of adaptive selection were found in the local population of A. cerana using VG gene sequence analysis based on Jukes−Cantor genetic distances, cluster analysis, dN/dS ratio evaluation, and Tajima's D neutrality test. Based on analysis of the VG gene sequences, Apis cerana koreana subspecies in the Korean Peninsula were subdivided into three groups in accordance with their geographic localization from north to south. The VG gene sequences are acceptable tools to study the sustainability and adaptation of A. cerana populations.

3.
BMC Ecol Evol ; 22(1): 51, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35473550

RESUMO

BACKGROUND: Intense conversion of tropical forests into agricultural systems contributes to habitat loss and the decline of ecosystem functions. Plant-pollinator interactions buffer the process of forest fragmentation, ensuring gene flow across isolated patches of forests by pollen transfer. In this study, we identified the composition of pollen grains stored in pot-pollen of stingless bees, Tetragonula laeviceps, via dual-locus DNA metabarcoding (ITS2 and rbcL) and light microscopy, and compared the taxonomic coverage of pollen sampled in distinct land-use systems categorized in four levels of management intensity (forest, shrub, rubber, and oil palm) for landscape characterization. RESULTS: Plant composition differed significantly between DNA metabarcoding and light microscopy. The overlap in the plant families identified via light microscopy and DNA metabarcoding techniques was low and ranged from 22.6 to 27.8%. Taxonomic assignments showed a dominance of pollen from bee-pollinated plants, including oil-bearing crops such as the introduced species Elaeis guineensis (Arecaceae) as one of the predominant taxa in the pollen samples across all four land-use types. Native plant families Moraceae, Euphorbiaceae, and Cannabaceae appeared in high proportion in the analyzed pollen material. One-way ANOVA (p > 0.05), PERMANOVA (R² values range from 0.14003 to 0.17684, for all tests p-value > 0.5), and NMDS (stress values ranging from 0.1515 to 0.1859) indicated a lack of differentiation between the species composition and diversity of pollen type in the four distinct land-use types, supporting the influx of pollen from adjacent areas. CONCLUSIONS: Stingless bees collected pollen from a variety of agricultural crops, weeds, and wild plants. Plant composition detected at the family level from the pollen samples likely reflects the plant composition at the landscape level rather than the plot level. In our study, the plant diversity in pollen from colonies installed in land-use systems with distinct levels of forest transformation was highly homogeneous, reflecting a large influx of pollen transported by stingless bees through distinct land-use types. Dual-locus approach applied in metabarcoding studies and visual pollen identification showed great differences in the detection of the plant community, therefore a combination of both methods is recommended for performing biodiversity assessments via pollen identification.


Assuntos
Microscopia , Floresta Úmida , Animais , Abelhas/genética , Monitoramento Biológico , Produtos Agrícolas/genética , Código de Barras de DNA Taxonômico , Ecossistema , Indonésia , Pólen/genética
4.
G3 (Bethesda) ; 11(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34544128

RESUMO

Apis mellifera L., the western honey bee is a major crop pollinator that plays a key role in beekeeping and serves as an important model organism in social behavior studies. Recent efforts have improved on the quality of the honey bee reference genome and developed a chromosome-level assembly of 16 chromosomes, two of which are gapless. However, the rest suffer from 51 gaps, 160 unplaced/unlocalized scaffolds, and the lack of 2 distal telomeres. The gaps are located at the hard-to-assemble extended highly repetitive chromosomal regions that may contain functional genomic elements. Here, we use de novo re-assemblies from the most recent reference genome Amel_HAv_3.1 raw reads and other long-read-based assemblies (INRA_AMelMel_1.0, ASM1384120v1, and ASM1384124v1) of the honey bee genome to resolve 13 gaps, five unplaced/unlocalized scaffolds and, the lacking telomeres of the Amel_HAv_3.1. The total length of the resolved gaps is 848,747 bp. The accuracy of the corrected assembly was validated by mapping PacBio reads and performing gene annotation assessment. Comparative analysis suggests that the PacBio-reads-based assemblies of the honey bee genomes failed in the same highly repetitive extended regions of the chromosomes, especially on chromosome 10. To fully resolve these extended repetitive regions, further work using ultra-long Nanopore sequencing would be needed. Our updated assembly facilitates more accurate reference-guided scaffolding and marker/sequence mapping in honey bee genomics studies.


Assuntos
Genoma , Genômica , Animais , Abelhas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA
5.
Saudi J Biol Sci ; 27(8): 2025-2030, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32714027

RESUMO

Diabetes mellitus (DM) is a metabolic disease characterised by chronic hyperglycaemia with impaired carbohydrate, fat and protein metabolism caused by defects in insulin secretion or action. Based on our previous research, stingless bee honey (SLBH) from Tetragonula biroi and T. laeviceps can inhibit alpha-glucosidase activities. Therefore, the aim of the present study was to determine the effects of daily oral administration of SLBH on body weight (BW) and fasting blood glucose (FBG) levels of male rats with streptozotocin (STZ)-induced DM. Thirty-six male Sprague Dawley rats were divided into six groups of six rats each. One group of normal non-diabetic rats served as a positive control. The diabetic groups were intraperitoneally (i.p.) injected with STZ (50 mg/kg BW) for induction of DM and divided into five equal subgroups of six animals each: an untreated group as a negative control; a group treated with 0.6 mg/kg BW of glibenclamide as a positive control and three SLBN treatment groups that had daily oral administration of 0.5, 1.0 or 2.0 g/kg BW, respectively, for 35 days. The results showed that SLBH significantly reduced loss of BW in diabetic rats. FBG levels in diabetic rat blood, collected from the tail, were measured using Accu-Chek test strips. The FBG levels in diabetic rats that have oral administered intake with glibenclamide and SLBH were stable. There were no changes in serum FBG levels in SLBH-treated diabetic rats for 35 days. Pancreatic histopathology results from all groups showed no abnormalities or tissue damage in either diabetic or non-diabetic rats. The results of this study show that administration of SLBH reduced BW loss or improved BW of rats with STZ-induced DM. Meanwhile, the reduction in loss of BW that occurred in diabetic rats after 35 days of SLBH administration was the result of reduced formation of fats and proteins, which are broken down into energy. Further research is needed to determine the antidiabetic effects of honey from other stingless honeybee species.

6.
Trop Life Sci Res ; 30(1): 89-107, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30847035

RESUMO

Genes related to carbohydrate metabolism have evolved rapidly in eusocial bees, including honey bees. However, the characterisation of carbohydrate metabolism genes has not been reported in Apis andreniformis or Apis cerana indica. This study aimed to characterise phosphofructokinase (PFK) and pyruvate kinase (PK) genes in these honey bee species and to analyse the evolution of the genus Apis using these genes. This study found the first data regarding A. andreniformis PFK and PK-like nucleotide sequences. A BLAST-n algorithm-based search showed that A. andreniformis and A. c. indica PFK and PK genes were homologous with those of Apis florea and Apis cerana cerana from Korea, respectively. Multiple alignments of PFKs from five Apis species showed many exon gains and losses, but only one among the PKs. Thus, the exon-intron organisation of the PK genes may be more conserved compare with that of the PFKs. Another evolutionary pattern indicated that more nucleotide substitutions occurred in Apis' PK than PFK genes. Deduced PFK amino acid sequences revealed a PFK consensus pattern of 19 amino acids, while the deduced PK amino acid sequences were predicted to have barrel and alpha/beta domains. Based on these two metabolism-related genes, The Neighbour-joining and Maximum likelihood phylogenetic trees are congruent and revealed that the A. andreniformis and A. florea group were in the basal position. Apis mellifera, A. cerana, and Apis dorsata formed a monophyletic clade, although the positions of A. mellifera and A. dorsata were different in the nucleotide- and amino acid-based phylogenetic trees.

7.
Mol Phylogenet Evol ; 43(2): 543-52, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17123837

RESUMO

DNA sequences from three mitochondrial (rrnL, cox2, nad2) and one nuclear gene (itpr) from all 9 known honey bee species (Apis), a 10th possible species, Apis dorsata binghami, and three outgroup species (Bombus terrestris, Melipona bicolor and Trigona fimbriata) were used to infer Apis phylogenetic relationships using Bayesian analysis. The dwarf honey bees were confirmed as basal, and the giant and cavity-nesting species to be monophyletic. All nodes were strongly supported except that grouping Apis cerana with A. nigrocincta. Two thousand post-burnin trees from the phylogenetic analysis were used in a Bayesian comparative analysis to explore the evolution of dance type, nest structure, comb structure and dance sound within Apis. The ancestral honey bee species was inferred with high support to have nested in the open, and to have more likely than not had a silent vertical waggle dance and a single comb. The common ancestor of the giant and cavity-dwelling bees is strongly inferred to have had a buzzing vertical directional dance. All pairwise combinations of characters showed strong association, but the multiple comparisons problem reduces the ability to infer associations between states between characters. Nevertheless, a buzzing dance is significantly associated with cavity-nesting, several vertical combs, and dancing vertically, a horizontal dance is significantly associated with a nest with a single comb wrapped around the support, and open nesting with a single pendant comb and a silent waggle dance.


Assuntos
Abelhas/genética , Comportamento Animal , Evolução Biológica , Filogenia , Animais , Teorema de Bayes , Abelhas/fisiologia , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genes de Insetos , Variação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...