Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(3): 112199, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36870054

RESUMO

The DNA-alkylating metabolite tilimycin is a microbial genotoxin. Intestinal accumulation of tilimycin in individuals carrying til+ Klebsiella spp. causes apoptotic erosion of the epithelium and colitis. Renewal of the intestinal lining and response to injury requires the activities of stem cells located at the base of intestinal crypts. This study interrogates the consequences of tilimycin-induced DNA damage to cycling stem cells. We charted the spatial distribution and luminal quantities of til metabolites in Klebsiella-colonized mice in the context of a complex microbial community. Loss of marker gene G6pd function indicates genetic aberrations in colorectal stem cells that became stabilized in monoclonal mutant crypts. Mice colonized with tilimycin-producing Klebsiella displayed both higher frequencies of somatic mutation and more mutations per affected individual than animals carrying a non-producing mutant. Our findings imply that genotoxic til+ Klebsiella may drive somatic genetic change in the colon and increase disease susceptibility in human hosts.


Assuntos
Microbiota , Mutagênicos , Humanos , Camundongos , Animais , Mutagênicos/metabolismo , Colo/metabolismo , Mutação/genética , Células-Tronco , Mucosa Intestinal
3.
Nat Microbiol ; 7(11): 1834-1848, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36289400

RESUMO

Klebsiella spp. that secrete the DNA-alkylating enterotoxin tilimycin colonize the human intestinal tract. Numbers of toxigenic bacteria increase during antibiotic use, and the resulting accumulation of tilimycin in the intestinal lumen damages the epithelium via genetic instability and apoptosis. Here we examine the impact of this genotoxin on the gut ecosystem. 16S rRNA sequencing of faecal samples from mice colonized with Klebsiella oxytoca strains and mechanistic analyses show that tilimycin is a pro-mutagenic antibiotic affecting multiple phyla. Transient synthesis of tilimycin in the murine gut antagonized niche competitors, reduced microbial richness and altered taxonomic composition of the microbiota both during and following exposure. Moreover, tilimycin secretion increased rates of mutagenesis in co-resident opportunistic pathogens such as Klebsiella pneumoniae and Escherichia coli, as shown by de novo acquisition of antibiotic resistance. We conclude that tilimycin is a bacterial mutagen, and flares of genotoxic Klebsiella have the potential to drive the emergence of resistance, destabilize the gut microbiota and shape its evolutionary trajectory.


Assuntos
Enterotoxinas , Klebsiella , Animais , Humanos , Camundongos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Ecossistema , Escherichia coli/genética , Klebsiella/genética , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal
4.
Front Microbiol ; 12: 692453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276625

RESUMO

Members of the Klebsiella oxytoca species complex (KoSC) are emerging human pathogens causing infections of increasing significance especially in healthcare settings. KoSC strains are affiliated with distinct phylogroups based on genetic variation at the beta-lactamase gene (bla OXY) and it has been proposed that each major phylogroup represents a unique species. However, since the typing methods applied in clinical settings cannot differentiate every species within the complex, existing clinical, epidemiological and DNA sequence data is frequently misclassified. Here we systematically examined the phylogenetic relationship of KoSC strains to evaluate robustness of existing typing methods and to provide a simple typing strategy for KoSC members that cannot be differentiated biochemically. Initial analysis of a collection of K. oxytoca, K. michiganensis, K. pasteurii, and K. grimontii strains of environmental origin showed robust correlation of core phylogeny and blaOXY grouping. Moreover, we identified species-specific accessory gene loci for these strains. Extension of species correlation using database entries initially failed. However, assessment of average nucleotide identities (ANI) and phylogenetic validations showed that nearly one third of isolates in public databases have been misidentified. Reclassification resulted in a robust reference strain set for reliable species identification of new isolates or for retyping of strains previously analyzed by multi-locus sequence typing (MLST). Finally, we show convergence of ANI, core gene phylogeny, and accessory gene content for available KoSC genomes. We conclude that also the monophyletic members K. oxytoca, K. michiganensis, K. pasteurii and K. grimontii can be simply differentiated by a PCR strategy targeting bla OXY and accessory genes defined here.

5.
Biomol NMR Assign ; 13(1): 121-125, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30617945

RESUMO

Transfer of genetic material is the main mechanism underlying the spread of antibiotic resistance and virulence factors within the bacterial community. Conjugation is one such process by which the genetic material is shared from one bacterium to another. The DNA substrate is processed and prepared for transfer by a multi-protein complex called the relaxosome .The relaxosome of plasmid R1 possesses the most crucial enzyme TraI which, both nicks and unwinds the dsDNA substrate. TraI comprises 1765 residues and multiple functional domains, including those catalyzing the DNA trans-esterase (relaxase) on the dsDNA designated for a conjugative transfer and DNA helicase activities. Structural and functional studies have been reported for most of the TraI except the C-terminal domain spanning from residue 1630 to 1765. This region is the least understood part of TraI and is thought to be highly disordered and flexible. This region, being intrinsically disordered, is hypothesized to be serving as an interacting platform for other proteins involved in this DNA transfer initiation mechanism. In this work, we report the 1H, 13C, 15N resonance assignment of this region as well as the secondary structure information based on the backbone chemical shifts.


Assuntos
Proteínas de Bactérias/química , Ressonância Magnética Nuclear Biomolecular , Plasmídeos/genética , Isótopos de Carbono , Isótopos de Nitrogênio , Domínios Proteicos , Estrutura Secundária de Proteína , Prótons
6.
Front Mol Biosci ; 3: 32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27486582

RESUMO

Bacterial conjugation is a form of type IV secretion used to transport protein and DNA directly to recipient bacteria. The process is cell contact-dependent, yet the mechanisms enabling extracellular events to trigger plasmid transfer to begin inside the cell remain obscure. In this study of plasmid R1 we investigated the role of plasmid proteins in the initiation of gene transfer. We find that TraI, the central regulator of conjugative DNA processing, interacts physically, and functionally with the plasmid partitioning proteins ParM and ParR. These interactions stimulate TraI catalyzed relaxation of plasmid DNA in vivo and in vitro and increase ParM ATPase activity. ParM also binds the coupling protein TraD and VirB4-like channel ATPase TraC. Together, these protein-protein interactions probably act to co-localize the transfer components intracellularly and promote assembly of the conjugation machinery. Importantly these data also indicate that the continued association of ParM and ParR at the conjugative pore is necessary for plasmid transfer to start efficiently. Moreover, the conjugative pilus and underlying secretion machinery assembled in the absence of Par proteins mediate poor biofilm formation and are completely dysfunctional for pilus specific R17 bacteriophage uptake. Thus, functional integration of Par components at the interface of relaxosome, coupling protein, and channel ATPases appears important for an optimal conformation and effective activation of the transfer machinery. We conclude that low copy plasmid R1 has evolved an active segregation system that optimizes both its vertical and lateral modes of dissemination.

7.
J Bacteriol ; 196(11): 2108-21, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24682328

RESUMO

Macromolecular transport by bacterial type IV secretion systems involves regulated uptake of (nucleo)protein complexes by the cell envelope-spanning transport channel. A coupling protein receptor is believed to recognize the specific proteins destined for transfer, but the steps initiating their translocation remain unknown. Here, we investigate the contribution of a complex of transfer initiation proteins, the relaxosome, of plasmid R1 to translocation of competing transferable substrates from mobilizable plasmids ColE1 and CloDF13 or the bacteriophage R17. We found that not only does the R1 translocation machinery engage the R1 relaxosome during conjugative self-transfer and during infection by R17 phage but it is also activated by its cognate relaxosome to mediate the export of an alternative plasmid. Transporter activity was optimized by the R1 relaxosome even when this complex itself could not be transferred, i.e., when the N-terminal activation domain (amino acids 1 to 992 [N1-992]) of TraI was present without the C-terminal conjugative helicase domain. We propose that the functional dependence of the transfer machinery on the R1 relaxosome for initiating translocation ensures that dissemination of heterologous plasmids does not occur at the expense of self-transfer.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Plasmídeos/metabolismo , Colífagos/fisiologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutação , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Plasmídeos/genética
8.
Mol Microbiol ; 82(5): 1071-85, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22066957

RESUMO

Bacterial conjugation is a form of type IV secretion that transports protein and DNA to recipient cells. Specific bacteriophage exploit the conjugative pili and cell envelope spanning protein machinery of these systems to invade bacterial cells. Infection by phage R17 requires F-like pili and coupling protein TraD, which gates the cytoplasmic entrance of the secretion channel. Here we investigate the role of TraD in R17 nucleoprotein uptake and find parallels to secretion mechanisms. The relaxosome of IncFII plasmid R1 is required. A ternary complex of plasmid oriT, TraD and a novel activation domain within the N-terminal 992 residues of TraI contributes a key mechanism involving relaxase-associated properties of TraI, protein interaction and the TraD ATPase. Helicase-associated activities of TraI are dispensable. These findings distinguish for the first time specific protein domains and complexes that process extracellular signals into distinct activation stages in the type IV initiation pathway. The study also provided insights into the evolutionary interplay of phage and the plasmids they exploit. Related plasmid F adapted to R17 independently of TraI. It follows that selection for phage resistance drives not only variation in TraA pilins but diversifies TraD and its binding partners in a plasmid-specific manner.


Assuntos
DNA Helicases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Escherichia coli/virologia , Transferência Genética Horizontal , Levivirus/fisiologia , Plasmídeos/metabolismo , Internalização do Vírus , Bacteriólise , Conjugação Genética , Escherichia coli/genética , Fímbrias Bacterianas/metabolismo , Levivirus/genética , Proteínas de Membrana/metabolismo , Modelos Biológicos , Plasmídeos/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Multimerização Proteica , Origem de Replicação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...