Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722513

RESUMO

Hexanucleotide repeat expansions (HREs) in the chromosome 9 open reading frame 72 (C9orf72) gene are the most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Both are debilitating neurodegenerative conditions affecting either motor neurons (ALS) in the brain and spinal cord or neurons in the frontal and/or temporal cortical lobes (FTD). HREs undergo repeat-associated non-ATG (RAN) translation on both sense and anti-sense strands, generating five distinct dipeptide repeat proteins (DPRs), poly-GA, -GR, -GP, -PA and -PR. Perturbed proteostasis is well-recognised in ALS pathogenesis, including processes affecting the endoplasmic reticulum (ER) and Golgi compartments. However, these mechanisms have not been well characterised for C9orf72-mediated ALS/FTD. In this study we demonstrate that C9orf72 DPRs polyGA, polyGR and polyGP (× 40 repeats) disrupt secretory protein transport from the ER to the Golgi apparatus in neuronal cells. Consistent with this finding, these DPRs also induce fragmentation of the Golgi apparatus, activate ER stress, and inhibit the formation of the omegasome, the precursor of the autophagosome that originates from ER membranes. We also demonstrate Golgi fragmentation in cells undergoing RAN translation that express polyGP. Furthermore, dysregulated ER-Golgi transport was confirmed in C9orf72 patient dermal fibroblasts. Evidence of aberrant ER-derived vesicles in spinal cord motor neurons from C9orf72 ALS patients compared to controls was also obtained. These data thus confirm that ER proteostasis and ER-Golgi transport is perturbed in C9orf72-ALS in the absence of protein over-expression. Hence this study identifies novel molecular mechanisms associated with the ER and Golgi compartments induced by the C9orf72 HRE.

2.
Sci Rep ; 13(1): 20467, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993492

RESUMO

Amyotrophic lateral sclerosis (ALS) is a severely debilitating neurodegenerative condition that is part of the same disease spectrum as frontotemporal dementia (FTD). Mutations in the CCNF gene, encoding cyclin F, are present in both sporadic and familial ALS and FTD. However, the pathophysiological mechanisms underlying neurodegeneration remain unclear. Proper functioning of the endoplasmic reticulum (ER) and Golgi apparatus compartments is essential for normal physiological activities and to maintain cellular viability. Here, we demonstrate that ALS/FTD-associated variant cyclin FS621G inhibits secretory protein transport from the ER to Golgi apparatus, by a mechanism involving dysregulation of COPII vesicles at ER exit sites. Consistent with this finding, cyclin FS621G also induces fragmentation of the Golgi apparatus and activates ER stress, ER-associated degradation, and apoptosis. Induction of Golgi fragmentation and ER stress were confirmed with a second ALS/FTD variant cyclin FS195R, and in cortical primary neurons. Hence, this study provides novel insights into pathogenic mechanisms associated with ALS/FTD-variant cyclin F, involving perturbations to both secretory protein trafficking and ER-Golgi homeostasis.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Mutação , Ciclinas/metabolismo
3.
Mol Neurodegener ; 15(1): 51, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907630

RESUMO

BACKGROUND: Pathological forms of TAR DNA-binding protein 43 (TDP-43) are present in motor neurons of almost all amyotrophic lateral sclerosis (ALS) patients, and mutations in TDP-43 are also present in ALS. Loss and gain of TDP-43 functions are implicated in pathogenesis, but the mechanisms are unclear. While the RNA functions of TDP-43 have been widely investigated, its DNA binding roles remain unclear. However, recent studies have implicated a role for TDP-43 in the DNA damage response. METHODS: We used NSC-34 motor neuron-like cells and primary cortical neurons expressing wildtype TDP-43 or TDP-43 ALS associated mutants (A315T, Q331K), in which DNA damage was induced by etoposide or H2O2 treatment. We investigated the consequences of depletion of TDP-43 on DNA repair using small interfering RNAs. Specific non homologous end joining (NHEJ) reporters (EJ5GFP and EJ2GFP) and cells lacking DNA-dependent serine/threonine protein kinase (DNA-PK) were used to investigate the role of TDP-43 in DNA repair. To investigate the recruitment of TDP-43 to sites of DNA damage we used single molecule super-resolution microscopy and a co-immunoprecipitation assay. We also investigated DNA damage in an ALS transgenic mouse model, in which TDP-43 accumulates pathologically in the cytoplasm. We also examined fibroblasts derived from ALS patients bearing the TDP-43 M337V mutation for evidence of DNA damage. RESULTS: We demonstrate that wildtype TDP-43 is recruited to sites of DNA damage where it participates in classical NHEJ DNA repair. However, ALS-associated TDP-43 mutants lose this activity, which induces DNA damage. Furthermore, DNA damage is present in mice displaying TDP-43 pathology, implying an active role in neurodegeneration. Additionally, DNA damage triggers features typical of TDP-43 pathology; cytoplasmic mis-localisation and stress granule formation. Similarly, inhibition of NHEJ induces TDP-43 mis-localisation to the cytoplasm. CONCLUSIONS: This study reveals that TDP-43 functions in DNA repair, but loss of this function triggers DNA damage and is associated with key pathological features of ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Dano ao DNA/fisiologia , Reparo do DNA por Junção de Extremidades/fisiologia , Proteínas de Ligação a DNA/metabolismo , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neurônios Motores/metabolismo
4.
iScience ; 23(5): 101097, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32446203

RESUMO

Pathological forms of TAR DNA-binding protein 43 (TDP-43) are present in almost all cases of amyotrophic lateral sclerosis (ALS), and 20% of familial ALS cases are due to mutations in superoxide dismutase 1 (SOD1). Redox regulation is critical to maintain cellular homeostasis, although how this relates to ALS is unclear. Here, we demonstrate that the redox function of protein disulfide isomerase (PDI) is protective against protein misfolding, cytoplasmic mislocalization of TDP-43, ER stress, ER-Golgi transport dysfunction, and apoptosis in neuronal cells expressing mutant TDP-43 or SOD1, and motor impairment in zebrafish expressing mutant SOD1. Moreover, previously described PDI mutants present in patients with ALS (D292N, R300H) lack redox activity and were not protective against ALS phenotypes. Hence, these findings implicate the redox activity of PDI centrally in ALS, linking it to multiple cellular processes. They also imply that therapeutics based on PDI's redox activity will be beneficial in ALS.

5.
Brain ; 143(3): 783-799, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32185393

RESUMO

Frontotemporal dementia and amyotrophic lateral sclerosis are clinically and pathologically overlapping disorders with shared genetic causes. We previously identified a disease locus on chromosome 16p12.1-q12.2 with genome-wide significant linkage in a large European Australian family with autosomal dominant inheritance of frontotemporal dementia and amyotrophic lateral sclerosis and no mutation in known amyotrophic lateral sclerosis or dementia genes. Here we demonstrate the segregation of a novel missense variant in CYLD (c.2155A>G, p.M719V) within the linkage region as the genetic cause of disease in this family. Immunohistochemical analysis of brain tissue from two CYLD p.M719V mutation carriers showed widespread glial CYLD immunoreactivity. Primary mouse neurons transfected with CYLDM719V exhibited increased cytoplasmic localization of TDP-43 and shortened axons. CYLD encodes a lysine 63 deubiquitinase and CYLD cutaneous syndrome, a skin tumour disorder, is caused by mutations that lead to reduced deubiquitinase activity. In contrast with CYLD cutaneous syndrome-causative mutations, CYLDM719V exhibited significantly increased lysine 63 deubiquitinase activity relative to the wild-type enzyme (paired Wilcoxon signed-rank test P = 0.005). Overexpression of CYLDM719V in HEK293 cells led to more potent inhibition of the cell signalling molecule NF-κB and impairment of autophagosome fusion to lysosomes, a key process in autophagy. Although CYLD mutations appear to be rare, CYLD's interaction with at least three other proteins encoded by frontotemporal dementia and/or amyotrophic lateral sclerosis genes (TBK1, OPTN and SQSTM1) suggests that it may play a central role in the pathogenesis of these disorders. Mutations in several frontotemporal dementia and amyotrophic lateral sclerosis genes, including TBK1, OPTN and SQSTM1, result in a loss of autophagy function. We show here that increased CYLD activity also reduces autophagy function, highlighting the importance of autophagy regulation in the pathogenesis of frontotemporal dementia and amyotrophic lateral sclerosis.


Assuntos
Esclerose Lateral Amiotrófica/genética , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/fisiologia , Demência Frontotemporal/genética , Predisposição Genética para Doença/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Autofagossomos/metabolismo , Autofagossomos/fisiologia , Axônios/patologia , Encéfalo/metabolismo , Proteínas de Ligação a DNA , Enzima Desubiquitinante CYLD/metabolismo , Enzimas Desubiquitinantes/metabolismo , Demência Frontotemporal/metabolismo , Camundongos , Mutação de Sentido Incorreto/genética , NF-kappa B/antagonistas & inibidores , Cultura Primária de Células , Transfecção
6.
Cell Mol Life Sci ; 77(19): 3859-3873, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31802140

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative diseases that are related genetically and pathologically. Mutations in the UBQLN2 gene, encoding the ubiquitin-like protein ubiquilin2, are associated with familial ALS/FTD, but the pathophysiological mechanisms remain unclear. Here, we demonstrate that ALS/FTD UBQLN2 mutants P497H and P506T inhibit protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus in neuronal cells. In addition, we observed that Sec31-positive ER exit sites are clustered in UBQLN2T487I patient spinal cord tissues. Both the ER-Golgi intermediate (ERGIC) compartment and the Golgi become disorganised and fragmented. This activates ER stress and inhibits ER-associated degradation. Hence, this study highlights perturbations in secretory protein trafficking and ER homeostasis as pathogenic mechanisms associated with ALS/FTD-associated forms of UBQLN2.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Proteínas Relacionadas à Autofagia/genética , Células Cultivadas , Estresse do Retículo Endoplasmático , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Humanos , Camundongos , Mutagênese Sítio-Dirigida , Neurônios/citologia , Neurônios/metabolismo , Transporte Proteico
7.
Front Neurosci ; 13: 532, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316328

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of both upper and lower motor neurons (MNs) in the brain, brainstem and spinal cord. The neurodegenerative mechanisms leading to MN loss in ALS are not fully understood. Importantly, the reasons why MNs are specifically targeted in this disorder are unclear, when the proteins associated genetically or pathologically with ALS are expressed ubiquitously. Furthermore, MNs themselves are not affected equally; specific MNs subpopulations are more susceptible than others in both animal models and human patients. Corticospinal MNs and lower somatic MNs, which innervate voluntary muscles, degenerate more readily than specific subgroups of lower MNs, which remain resistant to degeneration, reflecting the clinical manifestations of ALS. In this review, we discuss the possible factors intrinsic to MNs that render them uniquely susceptible to neurodegeneration in ALS. We also speculate why some MN subpopulations are more vulnerable than others, focusing on both their molecular and physiological properties. Finally, we review the anatomical network and neuronal microenvironment as determinants of MN subtype vulnerability and hence the progression of ALS.

8.
Hum Mol Genet ; 27(8): 1311-1331, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29409023

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder and mutations in superoxide dismutase 1 (SOD1) account for 20% of familial ALS cases. The aetiology of ALS remains unclear, but protein misfolding, endoplasmic reticulum (ER) stress and neuronal apoptosis are implicated. We previously established that protein disulphide isomerase (PDIA1) is protective against ER stress and apoptosis in neuronal cells expressing mutant SOD1, and recently mutations in PDIA1 and related PDI family member endoplasmic reticulum protein 57 (ERp57/PDIA3), were associated with ALS. Here, we examined whether ERp57 is also protective against mutant SOD1 or whether distinct specificity exists amongst individual PDI family members. Neuronal cells co-expressing SOD1 and ERp57 were examined for inclusion formation, ER stress, ubiquitin proteasome system (UPS) dysfunction and apoptosis. Over-expression of ERp57 inhibited inclusion formation, ER stress, UPS dysfunction and apoptosis, whereas silencing of ERp57 expression enhanced mutant SOD1 inclusion formation, ER stress and toxicity, indicating a protective role for ERp57 against SOD1 misfolding. ERp57 also inhibited the formation of mutant SOD1 inclusions and apoptosis in primary cortical neurons, thus confirming results obtained from cell lines. ERp57 partially co-localized with TAR DNA-binding protein-43 (TDP-43)-positive inclusions in spinal cords from sporadic ALS patients, thus linking ERp57 to protein misfolding in human sporadic disease. Our results therefore imply that ERp57 has a protective role against pathological events induced by mutant SOD1 and they link ERp57 to the misfolding of TDP-43. This study therefore has implications for the design of novel therapeutics based on the activities of the PDI family of proteins.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Estresse do Retículo Endoplasmático/genética , Neurônios/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Superóxido Dismutase-1/genética , Idoso , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Apoptose , Linhagem Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mutação , Neurônios/patologia , Cultura Primária de Células , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase-1/metabolismo
9.
Brain Pathol ; 28(2): 240-263, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28268246

RESUMO

In prion diseases, the brain lesion profile is influenced by the prion "strain" properties, the invasion route to the brain, and still unknown host cell-specific parameters. To gain insight into those endogenous factors, we analyzed the histopathological alterations induced by distinct prion strains in the mouse cerebellum. We show that 22L and ME7 scrapie prion proteins (PrP22L , PrPME7 ), but not bovine spongiform encephalopathy PrP6PB1 , accumulate in a reproducible parasagittal banding pattern in the cerebellar cortex of infected mice. Such banding pattern of PrP22L aggregation did not depend on the neuroinvasion route, but coincided with the parasagittal compartmentation of the cerebellum mostly defined by the expression of zebrins, such as aldolase C and the excitatory amino acid transporter 4, in Purkinje cells. We provide evidence that Purkinje cells display a differential, subtype-specific vulnerability to 22L prions with zebrin-expressing Purkinje cells being more resistant to prion toxicity, while in stripes where PrP22L accumulated most zebrin-deficient Purkinje cells are lost and spongiosis accentuated. In addition, in PrP22L stripes, enhanced reactive astrocyte processes associated with microglia activation support interdependent events between the topographic pattern of Purkinje cell death, reactive gliosis and PrP22L accumulation. Finally, we find that in preclinically-ill mice prion infection promotes at the membrane of astrocytes enveloping Purkinje cell excitatory synapses, upregulation of tumor necrosis factor-α receptor type 1 (TNFR1), a key mediator of the neuroinflammation process. These overall data show that Purkinje cell sensitivity to prion insult is locally restricted by the parasagittal compartmentation of the cerebellum, and that perisynaptic astrocytes may contribute to prion pathogenesis through prion-induced TNFR1 upregulation.


Assuntos
Cerebelo/metabolismo , Cerebelo/patologia , Proteínas Priônicas/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Bovinos , Encefalopatia Espongiforme Bovina/metabolismo , Encefalopatia Espongiforme Bovina/patologia , Transportador 4 de Aminoácido Excitatório/genética , Transportador 4 de Aminoácido Excitatório/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Scrapie/metabolismo , Scrapie/patologia , Sinapses/metabolismo , Sinapses/patologia
10.
Cell Mol Life Sci ; 75(2): 335-354, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28852778

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders that have common molecular and pathogenic characteristics, such as aberrant accumulation and ubiquitylation of TDP-43; however, the mechanisms that drive this process remain poorly understood. We have recently identified CCNF mutations in familial and sporadic ALS and FTD patients. CCNF encodes cyclin F, a component of an E3 ubiquitin-protein ligase (SCFcyclin F) complex that is responsible for ubiquitylating proteins for degradation by the ubiquitin-proteasome system. In this study, we examined the ALS/FTD-causing p.Ser621Gly (p.S621G) mutation in cyclin F and its effect upon downstream Lys48-specific ubiquitylation in transfected Neuro-2A and SH-SY5Y cells. Expression of mutant cyclin FS621G caused increased Lys48-specific ubiquitylation of proteins in neuronal cells compared to cyclin FWT. Proteomic analysis of immunoprecipitated Lys48-ubiquitylated proteins from mutant cyclin FS621G-expressing cells identified proteins that clustered within the autophagy pathway, including sequestosome-1 (p62/SQSTM1), heat shock proteins, and chaperonin complex components. Examination of autophagy markers p62, LC3, and lysosome-associated membrane protein 2 (Lamp2) in cells expressing mutant cyclin FS621G revealed defects in the autophagy pathway specifically resulting in impairment in autophagosomal-lysosome fusion. This finding highlights a potential mechanism by which cyclin F interacts with p62, the receptor responsible for transporting ubiquitylated substrates for autophagic degradation. These findings demonstrate that ALS/FTD-causing mutant cyclin FS621G disrupts Lys48-specific ubiquitylation, leading to accumulation of substrates and defects in the autophagic machinery. This study also demonstrates that a single missense mutation in cyclin F causes hyper-ubiquitylation of proteins that can indirectly impair the autophagy degradation pathway, which is implicated in ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/genética , Autofagia/genética , Ciclinas/genética , Demência Frontotemporal/genética , Ubiquitinação/genética , Esclerose Lateral Amiotrófica/complicações , Células Cultivadas , Demência Frontotemporal/complicações , Células HEK293 , Humanos , Lisina/metabolismo , Mutação de Sentido Incorreto/fisiologia
11.
Open Biol ; 7(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29021214

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that is characterized by progressive weakness, paralysis and muscle loss often resulting in patient death within 3-5 years of diagnosis. Recently, we identified disease-linked mutations in the CCNF gene, which encodes the cyclin F protein, in cohorts of patients with familial and sporadic ALS and frontotemporal dementia (FTD) (Williams KL et al 2016 Nat. Commun.7, 11253. (doi:10.1038/ncomms11253)). Cyclin F is a part of a Skp1-Cul-F-box (SCF) E3 ubiquitin-protein ligase complex and is responsible for ubiquitylating proteins for degradation by the proteasome. In this study, we investigated the phosphorylation status of cyclin F and the effect of the serine to glycine substitution at site 621 (S621G) on E3 ligase activity. This specific mutation (S621G) was found in a multi-generational Australian family with ALS/FTD. We identified seven phosphorylation sites on cyclin F, of which five are newly reported including Ser621. These phosphorylation sites were mostly identified within the PEST (proline, glutamic acid, serine and threonine) sequence located at the C-terminus of cyclin F. Additionally, we determined that casein kinase II (CK2) can phosphorylate Ser621 and thereby regulate the E3 ligase activity of the SCF(cyclin F) complex. Furthermore, the S621G mutation in cyclin F prevents phosphorylation by CK2 and confers elevated Lys48-ubiquitylation activity, a hallmark of ALS/FTD pathology. These findings highlight the importance of phosphorylation in regulating the activity of the SCF(cyclin F) E3 ligase complex that can affect downstream processes and may lead to defective motor neuron development, neuron degeneration and ultimately ALS and FTD.


Assuntos
Caseína Quinase II/metabolismo , Ciclinas/metabolismo , Complexos Multiproteicos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida , Ativação Enzimática , Células HEK293 , Humanos , Lisina , Espectrometria de Massas , Modelos Moleculares , Fosfatidilserinas , Fosforilação , Ligação Proteica , Ubiquitinação
12.
Front Mol Neurosci ; 10: 119, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28539871

RESUMO

Protein homeostasis, or proteostasis, has an important regulatory role in cellular function. Protein quality control mechanisms, including protein folding and protein degradation processes, have a crucial function in post-mitotic neurons. Cellular protein quality control relies on multiple strategies, including molecular chaperones, autophagy, the ubiquitin proteasome system, endoplasmic reticulum (ER)-associated degradation (ERAD) and the formation of stress granules (SGs), to regulate proteostasis. Neurodegenerative diseases are characterized by the presence of misfolded protein aggregates, implying that protein quality control mechanisms are dysfunctional in these conditions. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that are now recognized to overlap clinically and pathologically, forming a continuous disease spectrum. In this review article, we detail the evidence for dysregulation of protein quality control mechanisms across the whole ALS-FTD continuum, by discussing the major proteins implicated in ALS and/or FTD. We also discuss possible ways in which protein quality mechanisms could be targeted therapeutically in these disorders and highlight promising protein quality control-based therapeutics for clinical trials.

13.
Nat Med ; 19(9): 1124-31, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23955714

RESUMO

α-secretase-mediated cleavage of amyloid precursor protein (APP) precludes formation of neurotoxic amyloid-ß (Aß) peptides, and α-cleavage of cellular prion protein (PrP(C)) prevents its conversion into misfolded, pathogenic prions (PrP(Sc)). The mechanisms leading to decreased α-secretase activity in Alzheimer's and prion disease remain unclear. Here, we find that tumor necrosis factor-α-converting enzyme (TACE)-mediated α-secretase activity is impaired at the surface of neurons infected with PrP(Sc) or isolated from APP-transgenic mice with amyloid pathology. 3-phosphoinositide-dependent kinase-1 (PDK1) activity is increased in neurons infected with prions or affected by Aß deposition and in the brains of individuals with Alzheimer's disease. PDK1 induces phosphorylation and caveolin-1-mediated internalization of TACE. This dysregulation of TACE increases PrP(Sc) and Aß accumulation and reduces shedding of TNF-α receptor type 1 (TNFR1). Inhibition of PDK1 promotes localization of TACE to the plasma membrane, restores TACE-dependent α-secretase activity and cleavage of APP, PrP(C) and TNFR1, and attenuates PrP(Sc)- and Aß-induced neurotoxicity. In mice, inhibition or siRNA-mediated silencing of PDK1 extends survival and reduces motor impairment following PrP(Sc) infection and in APP-transgenic mice reduces Alzheimer's disease-like pathology and memory impairment.


Assuntos
Proteínas ADAM/metabolismo , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Doenças Priônicas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína ADAM17 , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Caveolina 1/metabolismo , Sobrevivência Celular , Células Cultivadas , Progressão da Doença , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Príons/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil , Interferência de RNA , RNA Interferente Pequeno , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...