Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 331: 108697, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-32563133

RESUMO

This research investigated the use of high-pressure processing (HPP) for inactivating vegetative pathogens and spoilage microbiota in fresh unfiltered coconut water (Cocos nucifera L) from nuts obtained from Florida and frozen CW from Brazil with pH >5.0 and storage at 4 °C. Additionally, CW was evaluated to determine if it supported the growth and toxin production of Clostridium botulinum with or without the use of HPP when stored at refrigeration temperatures. Samples of fresh unfiltered CW were inoculated to 5.5 to 6.5 logs/mL with multiple strain cocktails of E. coli O157:H7, Salmonella spp. and Listeria monocytogenes and HPP at 593 MPa for 3 min at 4 °C. HPP and inoculated non-HPP controls were stored at 4 °C for 54 and 75 days for Florida CW and Brazil CW, respectively. Results of analyses showed HPP samples with <1 CFU/mL and no detection (negative/25 mL) with enrichment procedures for the 3 inoculated pathogens for all analyses. The non-HPP control samples did not show growth of the pathogens but a gradual decrease in levels to ca. 3-Logs/mL by day 54 in the fresh Florida CW and similarly in frozen Brazil CW by Day 75. Microbial spoilage of uninoculated samples was evaluated for normal spoilage microbiota through 120 days storage at 4 °C. Microbial counts remained at ca. 2-logs with no detectable signs of spoilage for HPP samples through 120 d. The non-HPP control samples spoiled within 2 weeks of storage at 4 °C with gas production, cloudiness, and off-odors. To evaluate if CW supports the growth and toxin production of C. botulinum, samples of unfiltered and filtered (0.2 µm) CW were inoculated with either proteolytic or non-proteolytic C. botulinum spores at 2 log CFU/mL that were processed at 593 MPa for 3 min and stored at 4 °C and 10 °C for 45 days. Inoculated positive and non-inoculated negative controls were prepared and stored as the HPP treated and non-HPP samples. No growth of C. botulinum or toxin production was detected in either the unfiltered or filtered CW regardless if products were HPP treated or not. All inoculated samples with C. botulinum spores were enriched at Day-45 in PYGS media to determine the viability of the inoculated spores at the end of shelf-life and screened for C. botulinum toxins. In all samples, C. botulinum toxin Types A, B and E were detected indicating spores were viable throughout the storage. Type F toxin was not detected possibly due to inherent conditions in the samples that may affected toxin screening.


Assuntos
Fenômenos Fisiológicos Bacterianos , Cocos/microbiologia , Manipulação de Alimentos/métodos , Microbiologia de Alimentos/métodos , Sucos de Frutas e Vegetais/microbiologia , Alimentos Crus/microbiologia , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Brasil , Contagem de Colônia Microbiana , Temperatura
2.
J Food Sci ; 75(7): C613-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21535527

RESUMO

UNLABELLED: High hydrostatic pressure (HHP) technology was applied to organic Echinacea purpurea (E. purpurea) roots and flowers to determine the feasibility of using this technology for cold herb pasteurization, to produce microbiologically safe and shelf-stable products for the natural health products (NHPs) industry. HHP significantly (P < 0.01) reduced microbial contamination in both roots and flowers without affecting the phytochemical retention of chicoric and chlorogenic acids, and total alkamide contents. The antioxidant activity of E. purpurea methanol-derived extracts, evaluated in both chemical (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) [ABTS] and oxygen radical absorption capacity [ORAC] assay) and in cell culture models (RAW264, 7 macrophage, H(2)O(2)-induced intracellular oxidation, and lipopolysaccharide [LPS]-induced nitric oxide production), was not adversely affected by the application of HHP at both 2 and 5 min at 600 mPa. Furthermore, HHP did not affect the capacity of E. purpurea extracts to suppress nitric oxide production in LPS-activated macrophage cells. Therefore, our results show that HHP is an effective pasteurization process treatment to reduce microbial-contamination load while not adversely altering chemical and bioactive function of active constituents present in organic E. purpurea. PRACTICAL APPLICATION: Our study reports for the first time, the effectiveness of using high hydrostatic pressure (HHP) technology pressure to pasteurize E. purpurea root and flower, and the comparative retention of bioactive phytochemicals. Therefore, this technique can be used in food and natural health product industries to produce high-quality, microbiologically safe, and shelf-stable products.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Suplementos Nutricionais/análise , Desinfecção/métodos , Echinacea/microbiologia , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios não Esteroides/análise , Anti-Inflamatórios não Esteroides/química , Antioxidantes/análise , Antioxidantes/química , Carga Bacteriana , Ácidos Cafeicos/análise , Linhagem Celular Transformada , Ácido Clorogênico/análise , Suplementos Nutricionais/microbiologia , Echinacea/química , Escherichia coli/crescimento & desenvolvimento , Estudos de Viabilidade , Flores/química , Flores/microbiologia , Pressão Hidrostática , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Raízes de Plantas/química , Raízes de Plantas/microbiologia , Succinatos/análise
3.
J Econ Entomol ; 100(5): 1499-503, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17972625

RESUMO

Tests were conducted to determine the potential for high hydrostatic pressure (HPP) to control codling moth, Cydia pomonella (L.), and western cherry fruit fly, Rhagoletis indifferens Curran. Apples (Malus spp.) with codling moth larvae or eggs were treated at 24 and 72 h, respectively, after infestation at a series of pressures between 14,000 and 26,000 pounds per inch2 (psi). Survivorship was determined the next day for larvae and after 10 d for eggs. Codling moth eggs were more tolerant of HPP treatment than larvae. Mortality of larvae was 97% at 22,000 psi, whereas mortality of eggs at this dose was 29% and not significantly different from the untreated controls. In a second study, no codling moth eggs hatched at any high pressure treatment between 30,000 and 80,000 psi, indicating these pressures were lethal. Various stages of western cherry fruit fly were treated at pressures from 10,000 to 45,000 psi, and survivorship was determined after 24 h. Eggs and third instars were more tolerant of HPP than the first and second instars. Mortality was 100% in western cherry fruit fly eggs and larvae at pressures > or =25,000 psi. Apple and sweet cherry quality after high pressure treatment was poor, but high pressure may have applications to control quarantine pests in other fruits.


Assuntos
Frutas/parasitologia , Pressão Hidrostática , Controle de Insetos/métodos , Mariposas/fisiologia , Quarentena , Tephritidae/fisiologia , Animais , Larva/fisiologia , Malus/parasitologia , Mariposas/crescimento & desenvolvimento , Óvulo/fisiologia
4.
J Food Prot ; 58(1): 13-18, 1995 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31121788

RESUMO

Commercial mayonnaise and refrigerated ranch salad dressing were inoculated at two levels with two strains of Escherichia coli O157:H7, a non-pathogenic E. coli , and the non-fecal coliform Enterobacter aerogenes . Results showed that at the high inoculation level (>106 colony forming units [CFU]/g) in mayonnaise stored at room temperature (ca. 22°C) both strains of O157:H7 were undetected at 96 h. At the high inoculation level, all strains of coliform bacteria tested survived longer in salad dressing stored at 4°C than in mayonnaise stored at 22°C. The O157:H7 strains were still present at low levels after 17 days. The survival time in the low-level inoculum (104CFU/g) study decreased, but the survival pattern in the two products was similar to that observed in the high-level inoculum study. Slight differences in survival among strains were observed. The greater antimicrobial effect of mayonnaise may be attributable to differences in pH, water activity (aw), nutrients, storage temperature, and the presence of lysozyme in the whole eggs used in the production of commercial mayonnaise. Coliform bacteria survived longer in refrigerated salad dressing than in mayonnaise particularly at the high-level inoculum. Both mayonnaise (pH 3.91) and salad dressing (pH 4.51) did not support the growth of any of the microorganisms even though survival was observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...