Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Res ; 27(1): 32, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076899

RESUMO

BACKGROUND: There is great interest to engineer in vitro models that allow the study of complex biological processes of the microvasculature with high spatiotemporal resolution. Microfluidic systems are currently used to engineer microvasculature in vitro, which consists of perfusable microvascular networks (MVNs). These are formed through spontaneous vasculogenesis and exhibit the closest resemblance to physiological microvasculature. Unfortunately, under standard culture conditions and in the absence of co-culture with auxiliary cells as well as protease inhibitors, pure MVNs suffer from a short-lived stability. METHODS: Herein, we introduce a strategy for stabilization of MVNs through macromolecular crowding (MMC) based on a previously established mixture of Ficoll macromolecules. The biophysical principle of MMC is based on macromolecules occupying space, thus increasing the effective concentration of other components and thereby accelerating various biological processes, such as extracellular matrix deposition. We thus hypothesized that MMC will promote the accumulation of vascular ECM (basement membrane) components and lead to a stabilization of MVN with improved functionality. RESULTS: MMC promoted the enrichment of cellular junctions and basement membrane components, while reducing cellular contractility. The resulting advantageous balance of adhesive forces over cellular tension resulted in a significant stabilization of MVNs over time, as well as improved vascular barrier function, closely resembling that of in vivo microvasculature. CONCLUSION: Application of MMC to MVNs in microfluidic devices provides a reliable, flexible and versatile approach to stabilize engineered microvessels under simulated physiological conditions.

2.
Biomedicines ; 10(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35884981

RESUMO

Spinal cord injury (SCI) is an injurious process that begins with immediate physical damage to the spinal cord and associated tissues during an acute traumatic event. However, the tissue damage expands in both intensity and volume in the subsequent subacute phase. At this stage, numerous events exacerbate the pathological condition, and therein lies the main cause of post-traumatic neural degeneration, which then ends with the chronic phase. In recent years, therapeutic interventions addressing different neurodegenerative mechanisms have been proposed, but have met with limited success when translated into clinical settings. The underlying reasons for this are that the pathogenesis of SCI is a continued multifactorial disease, and the treatment of only one factor is not sufficient to curb neural degeneration and resulting paralysis. Recent advances have led to the development of biomaterials aiming to promote in situ combinatorial strategies using drugs/biomolecules to achieve a maximized multitarget approach. This review provides an overview of single and combinatorial regenerative-factor-based treatments as well as potential delivery options to treat SCIs.

3.
Bioact Mater ; 17: 526-541, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35846945

RESUMO

Tissue (re)vascularization strategies face various challenges, as therapeutic cells do not survive long enough in situ, while the administration of pro-angiogenic factors is hampered by fast clearance and insufficient ability to emulate complex spatiotemporal signaling. Here, we propose to address these limitations by engineering a functional biomaterial capable of capturing and concentrating the pro-angiogenic activities of mesenchymal stem cells (MSCs). In particular, dextran sulfate, a high molecular weight sulfated glucose polymer, supplemented to MSC cultures, interacts with MSC-derived extracellular matrix (ECM) components and facilitates their co-assembly and accumulation in the pericellular space. Upon decellularization, the resulting dextran sulfate-ECM hybrid material can be processed into MIcroparticles of SOlidified Secretome (MIPSOS). The insoluble format of MIPSOS protects protein components from degradation, while facilitating their sustained release. Proteomic analysis demonstrates that MIPSOS are highly enriched in pro-angiogenic factors, resulting in an enhanced pro-angiogenic bioactivity when compared to naïve MSC-derived ECM (cECM). Consequently, intravital microscopy of full-thickness skin wounds treated with MIPSOS demonstrates accelerated revascularization and healing, far superior to the therapeutic potential of cECM. Hence, the microparticle-based solidified stem cell secretome provides a promising platform to address major limitations of current therapeutic angiogenesis approaches.

4.
Cells ; 11(14)2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35883574

RESUMO

The neuroglial extracellular matrix (ECM) provides critical support and physiological cues for the proper growth, differentiation, and function of neuronal cells in the brain. However, in most in vitro settings that study neural physiology, cells are grown as monolayers on stiff surfaces that maximize adhesion and proliferation, and, therefore, they lack the physiological cues that ECM in native neuronal tissues provides. Macromolecular crowding (MMC) is a biophysical phenomenon based on the principle of excluded volume that can be harnessed to induce native ECM deposition by cells in culture. Here, we show that MMC using two species of Ficoll with vitamin C supplementation significantly boosts deposition of relevant brain ECM by cultured human astrocytes. Dopaminergic neurons cocultured on this astrocyte-ECM bed prepared under MMC treatment showed longer and denser neuronal extensions, a higher number of pre ad post synaptic contacts, and increased physiological activity, as evidenced by higher frequency calcium oscillation, compared to standard coculture conditions. When the pharmacological activity of various compounds was tested on MMC-treated cocultures, their responses were enhanced, and for apomorphine, a D2-receptor agonist, it was inverted in comparison to control cell culture conditions, thus emulating responses observed in in vivo settings. These results indicate that macromolecular crowding can harness the ECM-building potential of human astrocytes in vitro forming an ultra-flat 3D microenvironment that makes neural cultures more physiological and pharmacological relevant.


Assuntos
Técnicas de Cultura de Células , Matriz Extracelular , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Técnicas de Cocultura , Humanos , Substâncias Macromoleculares
5.
Cells ; 11(9)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35563866

RESUMO

The absence of a native extracellular matrix and the use of xenogeneic sera are often associated with rapid tenocyte function losses during in vitro culture. Herein, we assessed the influence of different sera (equine serum and foetal bovine serum) on equine tenocyte morphology, viability, metabolic activity, proliferation and protein synthesis as a function of tissue-specific extracellular matrix deposition (induced via macromolecular crowding), aging (passages 3, 6, 9) and time in culture (days 3, 5, 7). In comparison to cells at passage 3, at day 3, in foetal bovine serum and without macromolecular crowding (traditional equine tenocyte culture), the highest number of significantly decreased readouts were observed for cells in foetal bovine serum, at passage 3, at day 5 and day 7 and without macromolecular crowding. Again, in comparison to traditional equine tenocyte culture, the highest number of significantly increased readouts were observed for cells in equine serum, at passage 3 and passage 6, at day 7 and with macromolecular crowding. Our data advocate the use of an allogeneic serum and tissue-specific extracellular matrix for effective expansion of equine tenocytes.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Tenócitos , Animais , Matriz Extracelular/metabolismo , Cavalos , Substâncias Macromoleculares/metabolismo , Soroalbumina Bovina/metabolismo
6.
Methods Mol Biol ; 2299: 147-156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34028741

RESUMO

Excessive deposition of type I collagen follows in the wake of chronic inflammation processes in dysregulated tissue healing and causes fibrosis that can ultimately lead to organ failure. While the development of antifibrotic drugs is targeting various upstream events in collagen matrix formation (synthesis, secretion, deposition, stabilization, remodeling), the evaluation of drug effects would use as net read-out of the above effects the presence of a deposited collagen matrix by activated cells, mainly myofibroblasts. Conventional methods comprise lengthy and labor-intensive protocols for the quantification of deposited collagen, some with sensitivity and/or specificity issues. Here we describe the Scar-in-a-Jar assay, an in vitro fibrosis model for anti-fibrotic drug testing that benefits from a substantially accelerated extracellular matrix deposition employing macromolecular crowding and a collagen-producing cell type of choice (e.g., lung fibroblasts like WI-38). The system can be aided by activating compounds such as transforming growth factor-ß1, a classical inducer of the myofibroblast phenotype in fibroblasts. Direct image analysis of the well plate not only eliminates the need for matrix extraction or solubilization methods, but also allows for direct imaging and monitoring of phenotypical markers and offers the option for high-content screening applications when adapted to well formats compatible with a screening format.


Assuntos
Colágeno Tipo I/metabolismo , Fibroblastos/citologia , Pulmão/patologia , Miofibroblastos/citologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Matriz Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose , Humanos , Pulmão/efeitos dos fármacos , Modelos Biológicos , Imagem Molecular , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Fenótipo , Fator de Crescimento Transformador beta1/farmacologia
7.
Trends Biochem Sci ; 46(10): 805-811, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33994289

RESUMO

In multicellular organisms, the intracellular and extracellular spaces are considerably packed with a diverse range of macromolecular species. Yet, standard eukaryotic cell culture is performed in dilute, and deprived of macromolecules culture media, that barely imitate the density and complex macromolecular composition of tissues. Essentially, we drown cells in a sea of media and then expect them to perform physiologically. Herein, we argue the use of macromolecular crowding (MMC) in eukaryotic cell culture for regenerative medicine and drug discovery purposes.


Assuntos
Células Eucarióticas , Matriz Extracelular , Substâncias Macromoleculares
9.
Stem Cell Reports ; 14(1): 105-121, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31902704

RESUMO

Human mesenchymal stem cell (hMSC) therapy offers significant potential for osteochondral regeneration. Such applications require their ex vivo expansion in media frequently supplemented with fibroblast growth factor 2 (FGF2). Particular heparan sulfate (HS) fractions stabilize FGF2-FGF receptor complexes. We show that an FGF2-binding HS variant (HS8) accelerates the expansion of freshly isolated bone marrow hMSCs without compromising their naivety. Importantly, the repair of osteochondral defects in both rats and pigs is improved after treatment with HS8-supplemented hMSCs (MSCHS8), when assessed histologically, biomechanically, or by MRI. Thus, supplementing hMSC culture media with an HS variant that targets endogenously produced FGF2 allows the elimination of exogenous growth factors that may adversely affect their therapeutic potency.


Assuntos
Glicosaminoglicanos/administração & dosagem , Transplante de Células-Tronco , Animais , Biomarcadores , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Células Cultivadas , Biologia Computacional , Relação Dose-Resposta a Droga , Expressão Gênica , Perfilação da Expressão Gênica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Ratos , Transplante de Células-Tronco/efeitos adversos , Transplante de Células-Tronco/métodos , Homeostase do Telômero/efeitos dos fármacos
10.
Biofabrication ; 12(2): 025018, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31855856

RESUMO

Cellular therapies play an important role in tendon tissue engineering, with tenocytes being the most prominent and potent cell population available. However, for the development of a rich extracellular matrix tenocyte-assembled tendon equivalent, prolonged in vitro culture is required, which is associated with phenotypic drift. Recapitulation of tendon tissue microenvironment in vitro with cues that enhance and accelerate extracellular matrix synthesis and deposition, whilst maintaining tenocyte phenotype, may lead to functional cell therapies. Herein, we assessed the synergistic effect of low oxygen tension (enhances extracellular matrix synthesis) and macromolecular crowding (enhances extracellular matrix deposition) in human tenocyte culture. Protein analysis demonstrated that human tenocytes at 2% oxygen tension and with 50 µg ml-1 carrageenan (macromolecular crowder used) significantly increased synthesis and deposition of collagen types I, III, V and VI. Gene analysis at day 7 illustrated that human tenocytes at 2% oxygen tension and with 50 µg ml-1 carrageenan significantly increased the expression of prolyl 4-hydroxylase subunit alpha 1, procollagen-lysine 2- oxoglutarate 5-dioxygenase 2, scleraxis, tenomodulin and elastin, whilst chondrogenic (e.g. runt-related transcription factor 2, cartilage oligomeric matrix protein, aggrecan) and osteogenic (e.g. secreted phosphoprotein 1, bone gamma-carboxyglutamate protein) trans-differentiation markers were significantly down-regulated or remained unchanged. Collectively, our data clearly illustrates the beneficial synergistic effect of low oxygen tension and macromolecular crowding in the accelerated development of tissue equivalents.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Oxigênio/metabolismo , Tendões/metabolismo , Agrecanas/genética , Agrecanas/metabolismo , Carragenina/metabolismo , Carragenina/farmacologia , Células Cultivadas , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Regulação para Baixo/efeitos dos fármacos , Proteínas da Matriz Extracelular/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Oxigênio/farmacologia , Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Tendões/citologia , Regulação para Cima/efeitos dos fármacos
11.
Mater Sci Eng C Mater Biol Appl ; 106: 110280, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31753359

RESUMO

A faithful reconstruction of the native cellular microenvironment is instrumental for tissue engineering. Macromolecular crowding (MMC) empowers cells to deposit their own extracellular matrix (ECM) in greater amounts, and thus contributes to building tissue-specific complex microenvironments in vitro. Dextran sulfate (DxS, 500 kDa), a semi-synthetic sulfated polyglucose, was shown previously at a fractional volume occupancy (FVO) of 5.2% (v/v; 100 µg/ml) to act as a potent molecular crowding agent in vitro. When added to human mesenchymal stromal cell (MSC) cultures, DxS enhanced fibronectin and collagen I deposition several-fold also at concentrations with negligible FVO (<1% v/v). In a cell-free system, incubation of culture media supplemented with fetal bovine serum (FBS), purified fibronectin or collagen I with DxS led to a co-deposition of respective components, exhibiting a similar granular pattern as observed in cell culture. Aggregation of FBS components, fibronectin or collagen I with DxS was confirmed by dynamic light scattering, where an increase in hydrodynamic radius in the respective mixtures was observed. FBS- and fibronectin aggregates could be dissociated with increasing salt concentrations, indicating electrostatic forces to be responsible for the aggregation. Conversely, collagen I-DxS aggregates increased in size with increasing ion concentration, likely caused by charge screening of collagen I, which is net negatively charged at neutral pH, thus permitting weaker intermolecular interactions to occur. The incorporation of DxS into the ECM resulted in altered ECM topography and stiffness. DxS-supplemented cultures exhibited potentiated bioactivity, such as enhanced adipogenic and especially osteogenic differentiation under inductive conditions. We propose an alternative mechanism by which DxS drives ECM deposition via aggregation, and in an independent manner from MMC. A deeper understanding of the underlying mechanism will enable optimized engineering approaches for ECM-rich tissue constructs.


Assuntos
Meios de Cultura/química , Sulfato de Dextrana/química , Matriz Extracelular/metabolismo , Adipogenia/efeitos dos fármacos , Células da Medula Óssea/citologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo I/metabolismo , Meios de Cultura/farmacologia , Matriz Extracelular/química , Fibronectinas/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Eletricidade Estática
12.
Sci Rep ; 9(1): 18561, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811191

RESUMO

The long-term expansion of keratinocytes under conditions that avoid xenogeneic components (i.e. animal serum- and feeder cell-free) generally causes diminished proliferation and increased terminal differentiation. Here we present a culture system free of xenogeneic components that retains the self-renewal capacity of primary human keratinocytes. In vivo the extracellular matrix (ECM) of the tissue microenvironment has a major influence on a cell's fate. We used ECM from human dermal fibroblasts, cultured under macromolecular crowding conditions to facilitate matrix deposition and organisation, in a xenogeneic-free keratinocyte expansion protocol. Phospholipase A2 decellularisation produced ECM whose components resembled the core matrix composition of natural dermis by proteome analyses. Keratinocytes proliferated rapidly on these matrices, retained their small size, expressed p63, lacked keratin 10 and rarely expressed keratin 16. The colony forming efficiency of these keratinocytes was enhanced over that of keratinocytes grown on collagen I, indicating that dermal fibroblast-derived matrices maintain the in vitro expansion of keratinocytes in a stem-like state. Keratinocyte sheets formed on such matrices were multi-layered with superior strength and stability compared to the single-layered sheets formed on collagen I. Thus, keratinocytes expanded using our xenogeneic-free protocol retained a stem-like state, but when triggered by confluence and calcium concentration, they stratified to produce epidermal sheets with a potential clinical use.


Assuntos
Técnicas de Cultura de Células/métodos , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Queratinócitos/fisiologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Derme/citologia , Células Alimentadoras/citologia , Células Alimentadoras/metabolismo , Fibroblastos/citologia , Humanos , Queratinócitos/transplante , Transplante de Pele/métodos
13.
Biomater Sci ; 7(11): 4519-4535, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31436263

RESUMO

Macromolecular crowding is used by tissue engineers to accelerate extracellular matrix assembly in vitro, however, most mechanistic studies focus on the impact of crowding on collagen fiber assembly and largely ignore the highly abundant provisional matrix protein fibronectin. We show that the accelerated collagen I assembly as induced by the neutral crowding molecule Ficoll is regulated by cell access to fibronectin. Ficoll treatment leads to significant increases in the amount of surface adherent fibronectin, which can readily be harvested by cells to speed up fibrillogenesis. FRET studies reveal that Ficoll crowding also upregulates the total amount of fibronectin fibers in a low-tension state through upregulating fibronectin assembly. Since un-stretched fibronectin fibers have more collagen binding sites to nucleate the onset of collagen fibrillogenesis, our data suggest that the Ficoll-induced upregulation of low-tension fibronectin fibers contributes to enhanced collagen assembly in crowded conditions. In contrast, chemical cross-linking of fibronectin to the glass substrate prior to cell seeding prevents early force mediated fibronectin harvesting from the substrate and suppresses upregulation of collagen I assembly in the presence of Ficoll, even though the crowded environment is known to drive enzymatic cleavage of procollagen and collagen fiber formation. To show that our findings can be exploited for tissue engineering applications, we demonstrate that the addition of supplemental fibronectin in the form of an adsorbed coating markedly improves the speed of tissue formation under crowding conditions.


Assuntos
Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Colágeno Tipo I/química , Matriz Extracelular/química , Fibronectinas/química , Humanos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Polimerização , Engenharia Tecidual
14.
Adv Drug Deliv Rev ; 146: 126-154, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31226398

RESUMO

The past decades have seen significant advances in pro-angiogenic strategies based on delivery of molecules and cells for conditions such as coronary artery disease, critical limb ischemia and stroke. Currently, three major strategies are evolving. Firstly, various pharmacological agents (growth factors, interleukins, small molecules, DNA/RNA) are locally applied at the ischemic region. Secondly, preparations of living cells with considerable bandwidth of tissue origin, differentiation state and preconditioning are delivered locally, rarely systemically. Thirdly, based on the notion, that cellular effects can be attributed mostly to factors secreted in situ, the cellular secretome (conditioned media, exosomes) has come into the spotlight. We review these three strategies to achieve (neo)angiogenesis in ischemic tissue with focus on the angiogenic mechanisms they tackle, such as transcription cascades, specific signalling steps and cellular gases. We also include cancer-therapy relevant lymphangiogenesis, and shall seek to explain why there are often conflicting data between in vitro and in vivo. The lion's share of data encompassing all three approaches comes from experimental animal work and we shall highlight common technical obstacles in the delivery of therapeutic molecules, cells, and secretome. This plethora of preclinical data contrasts with a dearth of clinical studies. A lack of adequate delivery vehicles and standardised assessment of clinical outcomes might play a role here, as well as regulatory, IP, and manufacturing constraints of candidate compounds; in addition, completed clinical trials have yet to reveal a successful and efficacious strategy. As the biology of angiogenesis is understood well enough for clinical purposes, it will be a matter of time to achieve success for well-stratified patients, and most probably with a combination of compounds.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Citocinas/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Neovascularização Patológica/terapia , Animais , Sistemas de Liberação de Medicamentos , Humanos , Neovascularização Patológica/patologia
15.
Clin Hemorheol Microcirc ; 73(2): 317-328, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31006674

RESUMO

BACKGROUND: Prolyl hydroxylase inhibitors (PHIs) are promising compounds to promote angiogenesis by stabilizing hypoxia-inducible factor-1α (HIF-1α), a master regulator of angiogenesis. Increased HIF-1α presence induces expression of proangiogenic genes such as vascular endothelial growth factor (VEGF). OBJECTIVE: We investigated the pharmacological induction of hypoxia via the PHI ciclopirox olamine (CPX) as angiogenesis strategy on human dermal microvascular endothelial cell (hd-mvEC) spheroids directly and indirectly via activating human mesenchymal stem cells (hMSCs). METHODS: HMSCs were isolated from bone marrow and hd-mvECs from foreskin biopsies. MSC-conditioned medium after CPX stimulation (MSC-CM CPX) was analyzed by VEGF ELISA and Proteome Profiler™ Human Angiogenesis Array. Direct stimulation with CPX and indirect stimulation via MSC-CM CPX were compared in sprouting assays of hd-mvEC spheroids. RESULTS: Direct stimulation with CPX significantly increased sprouting of hd-mvEC spheroids. MSC-CM CPX also induced sprouting from hd-mvEC spheroids, which was mediated by angiogenic VEGF and other proangiogenic factors that had been produced by stimulated hMSCs. CONCLUSIONS: The stimulation with CPX increased the proangiogenic response of hd-mvECs and hMSCs. The direct stimulation of hd-mvECs with CPX has the potential to replace external VEGF supplementation. Thus, CPX can induce angiogenesis in ECs even in the absence of auxiliary cells demonstrating a promising proangiogenic approach.


Assuntos
Ciclopirox/uso terapêutico , Células Endoteliais/metabolismo , Expressão Gênica/genética , Células-Tronco Mesenquimais/metabolismo , Neovascularização Patológica/metabolismo , Ciclopirox/farmacologia , Humanos , Neovascularização Patológica/patologia
16.
Adv Healthc Mater ; 8(7): e1801544, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30892836

RESUMO

Melt electrowriting (MEW) is an emerging additive manufacturing technology that direct-writes low-micron diameter fibers into 3D scaffolds with high porosities. Often, the polymers currently used for MEW are hydrophobic thermoplastics that induce unspecific protein adsorption and subsequent uncontrolled cell adhesion. Here are developed a coating strategy for MEW scaffolds based on six-arm star-shaped NCO-poly(ethylene oxide-stat-propylene oxide) (sP(EO-stat-PO)). This permanently hydrophilizes the PCL through the formation of a hydrogel coating and minimizes unspecific interactions with proteins and cells. It also provides the option of simultaneous covalent attachment of bioactive molecules through reaction with isocyanates before these are hydrolyzed. Furthermore, a photoactivatable chemical functionalization is introduced that is not dependent on the time-limited window of isocyanate chemistry. For this, photo-leucine is covalently immobilized into the sP(EO-stat-PO) layer, resulting in a photoactivatable scaffold that enables the binding of sterically demanding molecules at any timepoint after scaffold preparation and coating and is decoupled from the isocyanate chemistry. A successful biofunctionalization of MEW scaffolds via this strategy is demonstrated with streptavidin and collagen as examples. This hydrogel coating system is a generic one that introduces flexible specific and multiple surface functionalization, potentially for a spectrum of polymers made from different manufacturing processes.


Assuntos
Alicerces Teciduais/química , Adesão Celular , Colágeno/química , Humanos , Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas , Leucina/química , Lisina/análogos & derivados , Lisina/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Oligopeptídeos/química , Poliésteres/química , Polietilenos/química , Polipropilenos/química , Raios Ultravioleta
17.
ALTEX ; 36(1): 144-147, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30633306
18.
Adv Drug Deliv Rev ; 146: 37-59, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30172924

RESUMO

Skin is the largest organ of the human body. Being the interface between the body and the outer environment, makes it susceptible to physical injury. To maintain life, nature has endowed skin with a fast healing response that invariably ends in the formation of scar at the wounded dermal area. In many cases, skin remodelling may be impaired, leading to local hypertrophic scars or keloids. One should also consider that the scarring process is part of the wound healing response, which always starts with inflammation. Thus, scarring can also be induced in the dermis, in the absence of an actual wound, during chronic inflammatory processes. Considering the significant portion of the population that is subject to abnormal scarring, this review critically discusses the state-of-the-art and upcoming therapies in skin scarring and fibrosis.


Assuntos
Cicatriz Hipertrófica/tratamento farmacológico , Fibrose/tratamento farmacológico , Dermatopatias/tratamento farmacológico , Animais , Cicatriz Hipertrófica/patologia , Fibrose/patologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Queloide/tratamento farmacológico , Queloide/patologia , Dermatopatias/patologia
19.
Adv Mater ; 31(1): e1801651, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30126066

RESUMO

Collagen is the oldest and most abundant extracellular matrix protein that has found many applications in food, cosmetic, pharmaceutical, and biomedical industries. First, an overview of the family of collagens and their respective structures, conformation, and biosynthesis is provided. The advances and shortfalls of various collagen preparations (e.g., mammalian/marine extracted collagen, cell-produced collagens, recombinant collagens, and collagen-like peptides) and crosslinking technologies (e.g., chemical, physical, and biological) are then critically discussed. Subsequently, an array of structural, thermal, mechanical, biochemical, and biological assays is examined, which are developed to analyze and characterize collagenous structures. Lastly, a comprehensive review is provided on how advances in engineering, chemistry, and biology have enabled the development of bioactive, 3D structures (e.g., tissue grafts, biomaterials, cell-assembled tissue equivalents) that closely imitate native supramolecular assemblies and have the capacity to deliver in a localized and sustained manner viable cell populations and/or bioactive/therapeutic molecules. Clearly, collagens have a long history in both evolution and biotechnology and continue to offer both challenges and exciting opportunities in regenerative medicine as nature's biomaterial of choice.


Assuntos
Materiais Biocompatíveis/metabolismo , Colágeno/metabolismo , Animais , Materiais Biocompatíveis/química , Colágeno/química , Colágeno/genética , Matriz Extracelular/metabolismo , Humanos , Conformação Molecular , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Medicina Regenerativa , Engenharia Tecidual
20.
Int J Bioprint ; 5(1): 167, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32596531

RESUMO

The overarching principle of three-dimensional (3D) bioprinting is the placing of cells or cell clusters in the 3D space to generate a cohesive tissue microarchitecture that comes close to in vivo characteristics. To achieve this goal, several technical solutions are available, generating considerable combinatorial bandwidth: (i) Support structures are generated first, and cells are seeded subsequently; (ii) alternatively, cells are delivered in a printing medium, so-called "bioink," that contains them during the printing process and ensures shape fidelity of the generated structure; and (iii) a "scaffold-free" version of bioprinting, where only cells are used and the extracellular matrix is produced by the cells themselves, also recently entered a phase of accelerated development and successful applications. However, the scaffold-free approaches may still benefit from secondary incorporation of scaffolding materials, thus expanding their versatility. Reversibly, the bioink-based bioprinting could also be improved by adopting some of the principles and practices of scaffold-free biofabrication. Collectively, we anticipate that combinations of these complementary methods in a "hybrid" approach, rather than their development in separate technological niches, will largely increase their efficiency and applicability in tissue engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA