Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(11): 102570, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209827

RESUMO

Dengue virus (DENV) is a flavivirus causing an estimated 390 million infections per year around the world. Despite the immense global health and economic impact of this virus, its true receptor(s) for internalization into live cells has not yet been identified, and no successful antivirals or treatments have been isolated to this date. This study aims to improve our understanding of virus entry routes by exploring the sialic acid-based cell surface molecule GM1a and its role in DENV infection. We studied the interaction of the virus with GM1a using fluorescence correlation spectroscopy, fluorescence crosscorrelation spectroscopy, imaging fluorescence correlation spectroscopy, amide hydrogen/deuterium exchange mass spectrometry, and isothermal titration calorimetry. Additionally, we explored the effect of this interaction on infectivity and movement of the virus during infection was explored using plaque assay and fluorescence-based imaging and single particle tracking. GM1a was deemed to interact with DENV at domain I (DI) and domain II (DII) of the E protein of the protein coat at quaternary contacts of a fully assembled virus, leading to a 10-fold and 7-fold increase in infectivity for DENV1 and DENV2 in mammalian cell systems, respectively. We determined that the interaction of the virus with GM1a triggers a speeding up of virus movement on live cell surfaces, possibly resulting from a reduction in rigidity of cellular rafts during infection. Collectively, our results suggest that GM1a functions as a coreceptor/attachment factor for DENV during infection in mammalian systems.


Assuntos
Vírus da Dengue , Dengue , Flavivirus , Animais , Humanos , Vírus da Dengue/metabolismo , Proteínas do Envelope Viral/metabolismo , Gangliosídeos/metabolismo , Flavivirus/metabolismo , Mamíferos/metabolismo
2.
Virology ; 570: 81-95, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390696

RESUMO

Rice black-streaked dwarf virus (RBSDV) is an important reovirus that infects both plants and its transmission vector small brown planthopper, causing severe crop loss. High affinity binding between RBSDV P10 and PI(3,5)P2 lipid layer was measured using biolayer interferometry (BLI). Subcellular co-localization of PI(3,5)P2 and RBSDV P10 was observed on membranous structures in insect cells with stochastic optical reconstruction microscopy (STORM) imaging. Putative interacting sites of PI(3,5)P2 lipid on a computational predicted RBSDV P10 structure were mapped to its "C-domain" (250-470 aa), using HDXMS data. The BLI and STORM results showed binding and co-localization of RBSDV P10, and PI(3,5)P2 on vesicle-like membranous structures were corroborated with the prediction of the binding interface. Understanding the lipid binding sites on viral proteins will lead to developing strategies to block viral-lipid interaction and disrupt viral pathogenesis in insect vectors and to block virus transmission and achieve disease control of crops in the field.


Assuntos
Hemípteros , Oryza , Vírus de Plantas , Reoviridae , Animais , Lipídeos , Doenças das Plantas , Vírus de Plantas/genética
3.
RNA Biol ; 18(5): 718-731, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33406991

RESUMO

The capsid protein of dengue virus strain 2 (DENV2C) promotes nucleic acid structural rearrangements using chaperone activity. However, the role of DENV2C during the interaction of RNA elements in the conserved 5' untranslated region (5'UTR) to the 3' untranslated region (3'UTR) is still unclear. Thus, we investigated the effect of DENV2C on the annealing mechanism of two RNA hairpin elements from the 5'UTR to their complementary sequences during (+)/(-) ds-RNAformation and (+) RNA circularization. DENV2C was found to switch the annealing pathway for RNA elements involved in (+)/(-) ds-RNA formation, but not for RNA elements related to (+) RNA circularization. In addition, we also determined that DENV2C modulates intrinsic dynamics and reduces kinetically trapped unfavourable conformations of the 5'UTR sequence. Thus, our results provide mechanistic insights by which DENV2C chaperones the interactions between RNA elements at the 5' and 3' ends during genome recombination, a prerequisite for DENV replication.


Assuntos
Regiões 5' não Traduzidas/genética , Proteínas do Capsídeo/fisiologia , Vírus da Dengue/metabolismo , Pareamento de Bases/genética , Sequência de Bases , Proteínas do Capsídeo/metabolismo , Sequência Conservada , Vírus da Dengue/genética , Vírus da Dengue/fisiologia , Genoma Viral/fisiologia , Conformação de Ácido Nucleico , Biossíntese de Proteínas/genética , RNA Circular/química , RNA Circular/genética , RNA Viral/química , RNA Viral/genética , Replicação Viral/genética
4.
Int J Mol Sci ; 21(12)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32586030

RESUMO

Spider silk is self-assembled from water-soluble silk proteins through changes in the environment, including pH, salt concentrations, and shear force. The N-terminal domains of major and minor ampullate silk proteins have been found to play an important role in the assembly process through salt- and pH-dependent dimerization. Here, we identified the sequences of the N-terminal domains of aciniform silk protein (AcSpN) and major ampullate silk protein (MaSpN) from Nephila antipodiana (NA). Different from MaSpN, our biophysical characterization indicated that AcSpN assembles to form large oligomers, instead of a dimer, upon condition changes from neutral to acidic pH and/or from a high to low salt concentration. Our structural studies, by nuclear magnetic resonance spectroscopy and homology modelling, revealed that AcSpN and MaSpN monomers adopt similar overall structures, but have very different charge distributions contributing to the differential self-association features. The intermolecular interaction interfaces for AcSp oligomers were identified using hydrogen-deuterium exchange mass spectrometry and mutagenesis. On the basis of the monomeric structure and identified interfaces, the oligomeric structures of AcSpN were modelled. The structural information obtained will facilitate an understanding of silk fiber formation mechanisms for aciniform silk protein.


Assuntos
Proteínas de Insetos/química , Multimerização Proteica , Seda/química , Aranhas/química , Sequência de Aminoácidos , Animais , Concentração de Íons de Hidrogênio , Conformação Proteica , Domínios Proteicos , Homologia de Sequência
5.
Prog Biophys Mol Biol ; 143: 5-12, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30553754

RESUMO

Viruses are metastable macromolecular assemblies that toggle between multiple conformational states through molecular rearrangements that are critical for mediating viral host entry. Viruses respond to different host specific environmental cues to form disassembly intermediates for the eventual release of genomic material required for replication. Although static snapshots of these intermediates have been captured through structural techniques such as X-ray crystallography and cryo-EM, the mechanistic details of these conformational rearrangements underpinning viral metastability have been poorly understood. Amide hydrogen deuterium exchange mass spectrometry (HDXMS) is a powerful tool that measures hydrogen bonding propensities to probe changes in the dynamics of different macromolecular interactions. Chaotropic agents such as urea can be used to disrupt hydrogen bonds between different subunits, thereby ranking regions of the virus that are critical in maintaining viral stability. By controlled urea denaturation with HDXMS, we have identified specific loci in a Turnip Crinkle Virus (TCV) model showing increased deuterium exchange with even minimally disruptive concentrations of urea. These loci represent dynamic disassembly hotspots. These hotspots are predominantly present at the quaternary contacts at the 3-fold and 5-fold axes. This approach can be applied to detect vulnerabilities in virus icosahedral structures to uncover the molecular mechanism of viral disassembly.


Assuntos
Vírion/metabolismo , Quimotripsina/metabolismo , Espectrometria de Massa com Troca Hidrogênio-Deutério , Modelos Moleculares , Conformação Proteica , Desdobramento de Proteína/efeitos dos fármacos , Proteólise , Ureia/farmacologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Vírion/efeitos dos fármacos
6.
ACS Chem Biol ; 13(6): 1621-1630, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29792674

RESUMO

The 11 kDa, positively charged dengue capsid protein (C protein) exists stably as a homodimer and colocalizes with the viral genome within mature viral particles. Its core is composed of four alpha helices encompassing a small hydrophobic patch that may interact with lipids, but approximately 20% of the protein at the N-terminus is intrinsically disordered, making it challenging to elucidate its conformational landscape. Here, we combine small-angle X-ray scattering (SAXS), amide hydrogen-deuterium exchange mass spectrometry (HDXMS), and atomic-resolution molecular dynamics (MD) simulations to probe the dynamics of dengue C proteins. We show that the use of MD force fields (FFs) optimized for intrinsically disordered proteins (IDPs) is necessary to capture their conformational landscape and validate the computationally generated ensembles with reference to SAXS and HDXMS data. Representative ensembles of the C protein dimer are characterized by alternating, clamp-like exposure and occlusion of the internal hydrophobic patch, as well as by residual helical structure at the disordered N-terminus previously identified as a potential source of autoinhibition. Such dynamics are likely to determine the multifunctionality of the C protein during the flavivirus life cycle and hence impact the design of novel antiviral compounds.


Assuntos
Proteínas do Capsídeo/química , Vírus da Dengue/química , Proteínas Intrinsicamente Desordenadas/química , Espectrometria de Massas , Simulação de Dinâmica Molecular , Conformação Proteica , Multimerização Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...