Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 10(1): 5115, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712603

RESUMO

The Epithelial to Mesenchymal Transition (EMT) regulates cell plasticity during embryonic development and in disease. It is dynamically orchestrated by transcription factors (EMT-TFs), including Snail, Zeb, Twist and Prrx, all activated by TGF-ß among other signals. Here we find that Snail1 and Prrx1, which respectively associate with gain or loss of stem-like properties and with bad or good prognosis in cancer patients, are expressed in complementary patterns during vertebrate development and in cancer. We show that this complementarity is established through a feedback loop in which Snail1 directly represses Prrx1, and Prrx1, through direct activation of the miR-15 family, attenuates the expression of Snail1. We also describe how this gene regulatory network can establish a hierarchical temporal expression of Snail1 and Prrx1 during EMT and validate its existence in vitro and in vivo, providing a mechanism to switch and select different EMT programs with important implications in development and disease.


Assuntos
Transição Epitelial-Mesenquimal/genética , Redes Reguladoras de Genes , Animais , Linhagem Celular , Embrião de Galinha , Predisposição Genética para Doença , Proteínas de Homeodomínio , Humanos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Prognóstico , Regiões Promotoras Genéticas , Fatores de Transcrição da Família Snail/metabolismo , Peixe-Zebra/embriologia
3.
Cell Rep ; 29(2): 464-479.e5, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597104

RESUMO

The centromere is an essential chromosomal region required for accurate chromosome segregation. Most eukaryotic centromeres are defined epigenetically by the histone H3 variant, centromere protein (CENP)-A, yet how its self-propagation is achieved remains poorly understood. Here, we develop a heterologous system to reconstitute epigenetic inheritance of centromeric chromatin by ectopically targeting the Drosophila centromere proteins dCENP-A, dCENP-C, and CAL1 to LacO arrays in human cells. Dissecting the function of these three components uncovers the key role of self-association of dCENP-C and CAL1 for their mutual interaction and dCENP-A deposition. Importantly, we identify CAL1 to be required for dCENP-C loading onto chromatin in cooperation with dCENP-A nucleosomes, thus closing the epigenetic loop to ensure dCENP-C and dCENP-A replenishment during the cell division cycle. Finally, we show that all three factors are sufficient for dCENP-A propagation and propose a model for the epigenetic inheritance of Drosophila centromere identity.


Assuntos
Centrômero/metabolismo , Drosophila melanogaster/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Proteína Centromérica A/química , Proteína Centromérica A/metabolismo , Cromatina/metabolismo , Cromossomos Humanos/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Feminino , Humanos , Nucleossomos/metabolismo , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína
4.
Dev Cell ; 51(4): 446-459.e5, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31630980

RESUMO

Despite their external bilateral symmetry, vertebrates have internal left/right (L/R) asymmetries required for optimal organ function. BMP-induced epithelial to mesenchymal transition (EMT) in the lateral plate mesoderm (LPM) triggers L/R asymmetric cell movements toward the midline, higher from the right, which are crucial for heart laterality in vertebrates. However, how the L/R asymmetric levels of EMT factors are achieved is not known. Here, we show that the posterior-to-anterior Nodal wave upregulates several microRNAs (miRNAs) to transiently attenuate the levels of EMT factors (Prrx1a and Snail1) on the left LPM in a Pitx2-independent manner in the fish and mouse. These data clarify the role of Nodal in heart laterality and explain how Nodal and BMP exert their respective dominance on the left and right sides through the mutual inhibition of their respective targets, ensuring the proper balance of L/R information required for heart laterality and morphogenesis.


Assuntos
Lateralidade Funcional/genética , MicroRNAs/genética , Animais , Padronização Corporal/fisiologia , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Lateralidade Funcional/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Coração/embriologia , Proteínas de Homeodomínio/metabolismo , Mesoderma/metabolismo , MicroRNAs/metabolismo , Miocárdio/metabolismo , Proteína Nodal/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Vertebrados/genética , Vertebrados/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
5.
J Neurosci ; 35(23): 8718-29, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26063906

RESUMO

In the developing telencephalon, the medial ganglionic eminence (MGE) generates many cortical and virtually all striatal interneurons. While the molecular mechanisms controlling the migration of interneurons to the cortex have been extensively studied, very little is known about the nature of the signals that guide interneurons to the striatum. Here we report that the allocation of MGE-derived interneurons in the developing striatum of the mouse relies on a combination of chemoattractive and chemorepulsive activities. Specifically, interneurons migrate toward the striatum in response to Nrg1/ErbB4 chemoattraction, and avoid migrating into the adjacent cortical territories by a repulsive activity mediated by EphB/ephrinB signaling. Our results also suggest that the responsiveness of MGE-derived striatal interneurons to these cues is at least in part controlled by the postmitotic activity of the transcription factor Nkx2-1. This study therefore reveals parallel mechanisms for the migration of MGE-derived interneurons to the striatum and the cerebral cortex.


Assuntos
Movimento Celular/genética , Corpo Estriado/citologia , Interneurônios/fisiologia , Vias Neurais/fisiologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Córtex Cerebelar/citologia , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Proteínas Nucleares/genética , Técnicas de Cultura de Órgãos , Receptor EphB1/genética , Receptor EphB1/metabolismo , Receptor EphB3/genética , Receptor EphB3/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Transdução de Sinais , Telencéfalo/citologia , Telencéfalo/embriologia , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/genética
6.
EMBO J ; 33(8): 906-20, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24614228

RESUMO

N-cadherin-mediated adhesion is essential for maintaining the tissue architecture and stem cell niche in the developing neocortex. N-cadherin expression level is precisely and dynamically controlled throughout development; however, the underlying regulatory mechanisms remain largely unknown. MicroRNAs (miRNAs) play an important role in the regulation of protein expression and subcellular localisation. In this study, we show that three miRNAs belonging to the miR379-410 cluster regulate N-cadherin expression levels in neural stem cells and migrating neurons. The overexpression of these three miRNAs in radial glial cells repressed N-cadherin expression and increased neural stem cell differentiation and neuronal migration. This phenotype was rescued when N-cadherin was expressed from a miRNA-insensitive construct. Transient abrogation of the miRNAs reduced stem cell differentiation and increased cell proliferation. The overexpression of these miRNAs specifically in newborn neurons delayed migration into the cortical plate, whereas the knockdown increased migration. Collectively, our results indicate a novel role for miRNAs of the miR379-410 cluster in the fine-tuning of N-cadherin expression level and in the regulation of neurogenesis and neuronal migration in the developing neocortex.


Assuntos
Antígenos CD/biossíntese , Caderinas/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Células-Tronco Neurais/fisiologia , Animais , Movimento Celular , Camundongos , Neurogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...