Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 23: 1005-1015, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38420218

RESUMO

Corn stover is the most abundant form of crop residue that can serve as a source of lignocellulosic biomass in biorefinery approaches, for instance for the production of bioethanol. In such biorefinery processes, the constituent polysaccharide biopolymers are typically broken down into simple monomeric sugars by enzymatic saccharification, for further downstream fermentation into bioethanol. However, the recalcitrance of this material to enzymatic saccharification invokes the need for innovative pre-treatment methods to increase sugar conversion yield. Here, we focus on experimental glucose conversion time-courses for corn stover lignocellulose that has been pre-treated with different acid-catalysed processes and intensities. We identify the key parameters that determine enzymatic saccharification dynamics by performing a Sobol's sensitivity analysis on the comparison between the simulation results from our complex stochastic biophysical model, and the experimental data that we accurately reproduce. We find that the parameters relating to cellulose crystallinity and those associated with the cellobiohydrolase activity are predominantly driving the enzymatic saccharification dynamics. We confirm our computational results using mathematical calculations for a purely cellulosic substrate. On the one hand, having identified that only five parameters drastically influence the saccharification dynamics allows us to reduce the dimensionality of the parameter space (from nineteen to five parameters), which we expect will significantly speed up our fitting algorithm for comparison of experimental and simulated saccharification time-courses. On the other hand, these parameters directly highlight key targets for experimental endeavours in the optimisation of pre-treatment and saccharification conditions. Finally, this systematic and two-fold theoretical study, based on both mathematical and computational approaches, provides experimentalists with key insights that will support them in rationalising their complex experimental results.

2.
Comput Struct Biotechnol J ; 21: 5463-5475, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022701

RESUMO

Enzymatic digestion of lignocellulosic plant biomass is a key step in bio-refinery approaches for the production of biofuels and other valuable chemicals. However, the recalcitrance of this material in conjunction with its variability and heterogeneity strongly hampers the economic viability and profitability of biofuel production. To complement both academic and industrial experimental research in the field, we designed an advanced web application that encapsulates our in-house developed complex biophysical model of enzymatic plant cell wall degradation. PREDIG (https://predig.cs.hhu.de/) is a user-friendly, free, and fully open-source web application that allows the user to perform in silico experiments. Specifically, it uses a Gillespie algorithm to run stochastic simulations of the enzymatic saccharification of a lignocellulose microfibril, at the mesoscale, in three dimensions. Such simulations can for instance be used to test the action of distinct enzyme cocktails on the substrate. Additionally, PREDIG can fit the model parameters to uploaded experimental time-course data, thereby returning values that are intrinsically difficult to measure experimentally. This gives the user the possibility to learn which factors quantitatively explain the recalcitrance to saccharification of their specific biomass material.

3.
Biosci Rep ; 43(7)2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37132633

RESUMO

The synthesis and modification of fatty acids (FAs) from carbohydrates are paramount for the production of lipids. Simultaneously, lipids are pivotal energy storage in human health. They are associated with various metabolic diseases and their production pathways are for instance candidate therapeutic targets for cancer treatments. The fatty acid de novo synthesis (FADNS) occurs in the cytoplasm, while the microsomal modification of fatty acids (MMFA) happens at the surface of the endoplasmic reticulum (ER). The kinetics and regulation of these complex processes involve several enzymes. In mammals, the main ones are the acetyl-CoA carboxylase (ACC), the fatty acid synthase (FAS), the very-long-chain fatty acid elongases (ELOVL 1-7), and the desaturases (delta family). Their mechanisms and expression in different organs have been studied for more than 50 years. However, modeling them in the context of complex metabolic pathways is still a challenge. Distinct modeling approaches can be implemented. Here, we focus on dynamic modeling using ordinary differential equations (ODEs) based on kinetic rate laws. This requires a combination of knowledge on the enzymatic mechanisms and their kinetics, as well as the interactions between the metabolites, and between enzymes and metabolites. In the present review, after recalling the modeling framework, we support the development of such a mathematical approach by reviewing the available kinetic information of the enzymes involved.


Assuntos
Ácidos Graxos , Lipogênese , Animais , Humanos , Cinética , Ácidos Graxos/metabolismo , Mamíferos/metabolismo , Ácido Graxo Sintases/metabolismo
4.
PLoS Comput Biol ; 19(5): e1010694, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205718

RESUMO

In humans, glycogen storage diseases result from metabolic inborn errors, and can lead to severe phenotypes and lethal conditions. Besides these rare diseases, glycogen is also associated to widely spread societal burdens such as diabetes. Glycogen is a branched glucose polymer synthesised and degraded by a complex set of enzymes. Over the past 50 years, the structure of glycogen has been intensively investigated. Yet, the interplay between the detailed three-dimensional glycogen structure and the related enzyme activity is only partially characterised and still to be fully understood. In this article, we develop a stochastic coarse-grained and spatially resolved model of branched polymer biosynthesis following a Gillespie algorithm. Our study largely focusses on the role of the branching enzyme, and first investigates the properties of the model with generic parameter values, before comparing it to in vivo experimental data in mice. It arises that the ratio of glycogen synthase over branching enzyme reaction rates drastically impacts the structure of the granule. We deeply investigate the mechanism of branching and parametrise it using distinct lengths. Not only do we consider various possible sets of values for these lengths, but also distinct rules to apply them. We show how combining various values for these lengths finely tunes glycogen macromolecular structure. Comparing the model with experimental data confirms that we can accurately reproduce glycogen chain length distributions in wild type mice. Additional granule properties obtained for this fit are also in good agreement with typically reported values in the experimental literature. Nonetheless, we find that the mechanism of branching must be more flexible than usually reported. Overall, our model provides a theoretical basis to quantify the effect that single enzymatic parameters, in particular of the branching enzyme, have on the chain length distribution. Our generic model and methods can be applied to any glycogen data set, and could in particular contribute to characterise the mechanisms responsible for glycogen storage disorders.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Animais , Humanos , Camundongos , Enzima Ramificadora de 1,4-alfa-Glucana/química , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Glicogênio/metabolismo , Estrutura Molecular
5.
PLoS Comput Biol ; 17(9): e1009262, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34516546

RESUMO

The processing of agricultural wastes towards extraction of renewable resources is recently being considered as a promising alternative to conventional biofuel production. The degradation of agricultural residues is a complex chemical process that is currently time intensive and costly. Various pre-treatment methods are being investigated to determine the subsequent modification of the material and the main obstacles in increasing the enzymatic saccharification. In this study, we present a computational model that complements the experimental approaches. We decipher how the three-dimensional structure of the substrate impacts the saccharification dynamics. We model a cell wall microfibril composed of cellulose and surrounded by hemicellulose and lignin, with various relative abundances and arrangements. This substrate is subjected to digestion by different cocktails of well characterized enzymes. The saccharification dynamics is simulated in silico using a stochastic procedure based on a Gillespie algorithm. As we additionally implement a fitting procedure that optimizes the parameters of the simulation runs, we are able to reproduce experimental saccharification time courses for corn stover. Our model highlights the synergistic action of enzymes, and confirms the linear decrease of sugar conversion when either lignin content or crystallinity of the substrate increases. Importantly, we show that considering the crystallinity of cellulose in addition to the substrate composition is essential to interpret experimental saccharification data. Finally, our findings support the hypothesis of xylan being partially crystalline.


Assuntos
Lignina/química , Processos Estocásticos , Açúcares/química , Parede Celular/química , Celulose/química , Química Computacional/métodos , Cristalização , Estrutura Molecular , Zea mays/química
6.
J Theor Biol ; 505: 110370, 2020 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-32562706

RESUMO

The cytoskeleton in eukaryotic cells plays several crucial roles. In terms of intracellular transport, motor proteins use the cytoskeletal filaments as a backbone along which they can actively transport biological cargos such as vesicles carrying biochemical reactants. Crossings between such filaments constitute a key element, as they may serve to alter the destination of such payload. Although motor proteins are known to display a rich behaviour at such crossings, the latter have so far only been modelled as simple branching points. Here we explore a model for a crossing between two microtubules which retains the individual tracks consisting of protofilaments, and we construct a schematic representation of the transport paths. We study collective transport exemplified by the Totally Asymmetric Simple Exclusion Process (TASEP), and provide a full analysis of the transport features and the associated phase diagram, by a generic mean-field approach which we confirm through particle-based stochastic simulations. In particular we show that transport through such a compound crossing cannot be approximated from a coarse-grained structure with a simple branching point. Instead, it gives rise to entirely new and counterintuitive features: the fundamental current-density relation for traffic flow is no longer a single-valued function, and it furthermore differs according to whether it is observed upstream or downstream from the crossing. We argue that these novel features may be directly relevant for interpreting experimental measurements.


Assuntos
Microtúbulos , Modelos Biológicos , Transporte Biológico , Dineínas/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo , Transporte Proteico
7.
Nucleic Acids Res ; 48(6): 3071-3088, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32016368

RESUMO

During protein synthesis, charged tRNAs deliver amino acids to translating ribosomes, and are then re-charged by tRNA synthetases (aaRS). In humans, mutant aaRS cause a diversity of neurological disorders, but their molecular aetiologies are incompletely characterised. To understand system responses to aaRS depletion, the yeast glutamine aaRS gene (GLN4) was transcriptionally regulated using doxycycline by tet-off control. Depletion of Gln4p inhibited growth, and induced a GCN4 amino acid starvation response, indicative of uncharged tRNA accumulation and Gcn2 kinase activation. Using a global model of translation that included aaRS recharging, Gln4p depletion was simulated, confirming slowed translation. Modelling also revealed that Gln4p depletion causes negative feedback that matches translational demand for Gln-tRNAGln to aaRS recharging capacity. This maintains normal charged tRNAGln levels despite Gln4p depletion, confirmed experimentally using tRNA Northern blotting. Model analysis resolves the paradox that Gln4p depletion triggers a GCN4 response, despite maintenance of tRNAGln charging levels, revealing that normally, the aaRS population can sequester free, uncharged tRNAs during aminoacylation. Gln4p depletion reduces this sequestration capacity, allowing uncharged tRNAGln to interact with Gcn2 kinase. The study sheds new light on mutant aaRS disease aetiologies, and explains how aaRS sequestration of uncharged tRNAs can prevent GCN4 activation under non-starvation conditions.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas Serina-Treonina Quinases/genética , RNA de Transferência de Glutamina/genética , RNA de Transferência/genética , Proteínas de Saccharomyces cerevisiae/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Homeostase , Fosforilação , RNA de Transferência de Glutamina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Inanição/genética , Inanição/metabolismo
8.
Photosynth Res ; 145(1): 55-70, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31955343

RESUMO

Starch, a plant-derived insoluble carbohydrate composed of glucose polymers, is the principal carbohydrate in our diet and a valuable raw material for industry. The properties of starch depend on the arrangement of glucose units within the constituent polymers. However, key aspects of starch structure and the underlying biosynthetic processes are not well understood, limiting progress towards targeted improvement of our starch crops. In particular, the major component of starch, amylopectin, has a complex three-dimensional, branched architecture. This architecture stems from the combined actions of a multitude of enzymes, each having broad specificities that are difficult to capture experimentally. In this review, we reflect on experimental approaches and limitations to decipher the enzymes' specificities and explore possibilities for in silico simulations of these activities. We believe that the synergy between experimentation and simulation is needed for the correct interpretation of experimental data and holds the potential to greatly advance our understanding of the overall starch biosynthetic process. We furthermore propose that the formation of glucan secondary structures, concomitant with its synthesis, is a previously overlooked factor that directly affects amylopectin architecture through its impact on enzyme function.


Assuntos
Amilopectina/biossíntese , Arabidopsis/metabolismo , Amido/biossíntese , Glucanos/metabolismo , Folhas de Planta/metabolismo
9.
Biochem Soc Trans ; 45(4): 885-893, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28673938

RESUMO

Starch is the most widespread and abundant storage carbohydrate in plants and the main source of carbohydrate in the human diet. Owing to its remarkable properties and commercial applications, starch is still of growing interest. Its unique granular structure made of intercalated layers of amylopectin and amylose has been unraveled thanks to recent progress in microscopic imaging, but the origin of such periodicity is still under debate. Both amylose and amylopectin are made of linear chains of α-1,4-bound glucose residues, with branch points formed by α-1,6 linkages. The net difference in the distribution of chain lengths and the branching pattern of amylose (mainly linear), compared with amylopectin (racemose structure), leads to different physico-chemical properties. Amylose is an amorphous and soluble polysaccharide, whereas amylopectin is insoluble and exhibits a highly organized structure of densely packed double helices formed between neighboring linear chains. Contrarily to starch degradation that has been investigated since the early 20th century, starch production is still poorly understood. Most enzymes involved in starch growth (elongation, branching, debranching, and partial hydrolysis) are now identified. However, their specific action, their interplay (cooperative or competitive), and their kinetic properties are still largely unknown. After reviewing recent results on starch structure and starch growth and degradation enzymatic activity, we discuss recent results and current challenges for growing polysaccharides on granular surface. Finally, we highlight the importance of novel stochastic models to support the analysis of recent and complex experimental results, and to address how macroscopic properties emerge from enzymatic activity and structural rearrangements.


Assuntos
Modelos Moleculares , Plantas/metabolismo , Amido/metabolismo , Amilopectina/biossíntese , Amilopectina/química , Amilopectina/metabolismo , Amilose/biossíntese , Amilose/química , Amilose/metabolismo , Configuração de Carboidratos , Grânulos Citoplasmáticos , Glucanos/biossíntese , Glucanos/química , Glucanos/metabolismo , Hidrólise , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Técnicas de Síntese em Fase Sólida/tendências , Solubilidade , Amido/biossíntese , Amido/química , Processos Estocásticos
10.
Artigo em Inglês | MEDLINE | ID: mdl-24229113

RESUMO

We study the effect of local regulation mechanisms on stochastic network traffic, based on simple examples. Using the totally asymmetric simple exclusion process on a multiloop structure in which several segments share a single junction, we illustrate several mechanisms: (i) additional segments improve transport but the effect saturates due to blockage, (ii) bias reduces the overall transport and leads to several regimes, (iii) "pumping" particles out of the junctions, via a locally increased hopping rate, allows us to compensate the bottlenecks but becomes futile beyond a characteristic rate which we determine. We provide a generic discussion of combinations of these effects, including phase diagrams in terms of the control parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...