Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 281: 119718, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34147483

RESUMO

AIMS: Hypoxia, a pathophysiological condition, is profound in several cardiopulmonary diseases (CPD). Every individual's lethality to a hypoxia state differs in terms of hypoxia exposure time, dosage units and dependent on the individual's genetic makeup. Most of the proposed markers for CPD were generally aim to distinguish disease samples from normal samples. Although, as per the 2018 GOLD guidelines, clinically useful biomarkers for several cardio pulmonary disease patients in stable condition have yet to be identified. We attempt to address these key issues through the identification of Dynamic Network Biomarkers (DNB) to detect hypoxia induced early warning signals of CPD before the catastrophic deterioration. MATERIALS AND METHODS: The human microvascular endothelial tissues microarray datasets (GSE11341) of lung and cardiac expose to hypoxia (1% O2) for 3, 24 and 48 h were retrieved from the public repository. The time dependent differentially expressed genes were subjected to tissue specificity and promoter analysis to filtrate the noise levels in the networks and to dissect the tissue specific hypoxia induced genes. These filtered out genes were used to construct the dynamic segmentation networks. The hypoxia induced dynamic differentially expressed genes were validated in the lung and heart tissues of male rats. These rats were exposed to hypobaric hypoxia (simulated altitude of 25,000 or PO2 - 282 mm of Hg) progressively for 3, 24 and 48 h. KEY FINDINGS: To identify the temporal key genes regulated in hypoxia, we ranked the dominant genes based on their consolidated topological features from tissue specific networks, time dependent networks and dynamic networks. Overall topological ranking described VEGFA as a single node dynamic hub and strongly communicated with tissue specific genes to carry forward their tissue specific information. We named this type of VEGFAcentric dynamic networks as "V-DNBs". As a proof of principle, our methodology helped us to identify the V-DNBs specific for lung and cardiac tissues namely V-DNBL and V-DNBC respectively. SIGNIFICANCE: Our experimental studies identified VEGFA, SLC2A3, ADM and ENO2 as the minimum and sufficient candidates of V-DNBL. The dynamic expression patterns could be readily exploited to capture the pre disease state of hypoxia induced pulmonary vascular remodelling. Whereas in V-DNBC the minimum and sufficient candidates are VEGFA, SCL2A3, ADM, NDRG1, ENO2 and BHLHE40. The time dependent single node expansion indicates V-DNBC could also be the pre disease state pathological hallmark for hypoxia-associated cardiovascular remodelling. The network cross-talk and expression pattern between V-DNBL and V-DNBC are completely distinct. On the other hand, the great clinical advantage of V-DNBs for pre disease predictions, a set of samples during the healthy condition should suffice. Future clinical studies might further shed light on the predictive power of V-DNBs as prognostic and diagnostic biomarkers for CPD.


Assuntos
Cardiopatias/metabolismo , Hipóxia/metabolismo , Pneumopatias/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Biomarcadores/metabolismo , Deterioração Clínica , Regulação da Expressão Gênica , Cardiopatias/etiologia , Cardiopatias/patologia , Humanos , Hipóxia/complicações , Hipóxia/genética , Pneumopatias/etiologia , Pneumopatias/patologia , Masculino , Ratos , Ratos Sprague-Dawley
2.
Microrna ; 8(3): 223-236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30806334

RESUMO

BACKGROUND: Hypoxia is a pathophysiological condition which arises due to low oxygen concentration in conditions like cardiovascular diseases, inflammation, ascent to higher altitude, malignancies, deep sea diving, prenatal birth, etc. A number of microRNAs (miRNAs), Transcription Factors (TFs) and genes have been studied separately for their role in hypoxic adaptation and controlling cell-cycle progression and apoptosis during this stress. OBJECTIVE: We hypothesize that miRNAs and TFs may act in conjunction to regulate a multitude of genes and play a crucial and combinatorial role during hypoxia-stress-responses and associated cellcycle control mechanisms. METHOD: We collected a comprehensive and non-redundant list of human hypoxia-responsive miRNAs (also known as hypoxiamiRs). Their experimentally validated gene-targets were retrieved from various databases and a comprehensive hypoxiamiR-gene regulatory network was built. RESULTS: Functional characterization and pathway enrichment of genes identified phospho-proteins as enriched nodes. The phospho-proteins which were localized both in the nucleus and cytoplasm and could potentially play important role as signaling molecules were selected; and further pathway enrichment revealed that most of them were involved in NFkB signaling. Topological analysis identified several critical hypoxiamiRs and network perturbations confirmed their importance in the network. Feed Forward Loops (FFLs) were identified in the subnetwork of enriched genes, miRNAs and TFs. Statistically significant FFLs consisted of four miRNAs (hsa-miR-182-5p, hsa- miR-146b-5p, hsa-miR-96, hsa-miR-20a) and three TFs (SMAD4, FOXO1, HIF1A) both regulating two genes (NFkB1A and CDKN1A). CONCLUSION: Detailed BioCarta pathway analysis identified that these miRNAs and TFs together play a critical and combinatorial role in regulating cell-cycle under hypoxia, by controlling mechanisms that activate cell-cycle checkpoint protein, CDKN1A. These modules work synergistically to regulate cell-proliferation, cell-growth, cell-differentiation and apoptosis during hypoxia. A detailed mechanistic molecular model of how these co-regulatory FFLs may regulate the cell-cycle transitions during hypoxic stress conditions is also put forth. These biomolecules may play a crucial and deterministic role in deciding the fate of the cell under hypoxic-stress.


Assuntos
Ciclo Celular/genética , Hipóxia Celular/genética , Redes Reguladoras de Genes/genética , MicroRNAs/genética , Humanos , Fatores de Transcrição/metabolismo
3.
PLoS One ; 13(12): e0207359, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30540756

RESUMO

Seasonal and human physiological changes are important factors in the development of many diseases. But, the study of genuine seasonal impact on these diseases is difficult to measure due to many other environment and lifestyle factors which directly affect these diseases. However, several clinical studies have been conducted in different parts of the world, and it has clearly indicated that certain groups of population are highly subjected to seasonal changes, and their maladaptation can possibly lead to several disorders/diseases. Thus, it is crucial to study the significant seasonal sensitive diseases spread across the human population. To narrow down these disorders/diseases, the study hypothesized that high altitude (HA) associated diseases and disorders are of the strong variants of seasonal physiologic changes. It is because, HA is the only geographical condition for which humans can develop very efficient physiological adaptation mechanism called acclimatization. To study this hypothesis, PubMed was used to collect the HA associated symptoms and disorders. Disease Ontology based semantic similarity network (DSN) and disease-drug networks were constructed to narrow down the benchmark diseases and disorders of HA. The DSN which was further subjected to different community structure analysis uncovered the highly associated or possible comorbid diseases of HA. The predicted 12 lifestyle diseases were assumed to be "seasonal (sensitive) comorbid lifestyle diseases (SCLD)". A time series analyses on Google Search data of the world from 2004-2016 was conducted to investigate whether the 12 lifestyle diseases have seasonal patterns. Because, the trends were sensitive to the term used as benchmark; the temporal relationships among the 12 disease search volumes and their temporal sequences similarity by dynamic time warping analyses was used to predict the comorbid diseases. Among the 12 lifestyle diseases, the study provides an indirect evidence in the existence of severe seasonal comorbidity among hypertension, obesity, asthma and fibrosis diseases, which is widespread in the world population. Thus, the present study has successfully addressed this issue by predicting the SCLD, and indirectly verified them among the world population using Google Search Trend. Furthermore, based on the SCLD seasonal trend, the study also classified them as severe, moderate, and mild. Interestingly, seasonal trends of the severe seasonal comorbid diseases displayed an inverse pattern between USA (Northern hemisphere) and New Zealand (Southern hemisphere). Further, knowledge in the so called "seasonal sensitive populations" physiological response to seasonal triggers such as winter, summer, spring, and autumn become crucial to modulate disease incidence, disease course, or clinical prevention.


Assuntos
Comorbidade/tendências , Mineração de Dados , Doença Crônica , Humanos , Estilo de Vida , Estações do Ano
4.
Biochemistry ; 52(42): 7512-21, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24060347

RESUMO

Thermobifida fusca o-succinylbenzoate synthase (OSBS), a member of the enolase superfamily that catalyzes a step in menaquinone biosynthesis, has an amino acid sequence that is 22 and 28% identical with those of two previously characterized OSBS enzymes from Escherichia coli and Amycolatopsis sp. T-1-60, respectively. These values are considerably lower than typical levels of sequence identity among homologous proteins that have the same function. To determine how such divergent enzymes catalyze the same reaction, we determined the structure of T. fusca OSBS and identified amino acids that are important for ligand binding. We discovered significant differences in structure and conformational flexibility between T. fusca OSBS and other members of the enolase superfamily. In particular, the 20s loop, a flexible loop in the active site that permits ligand binding and release in most enolase superfamily proteins, has a four-amino acid deletion and is well-ordered in T. fusca OSBS. Instead, the flexibility of a different region allows the substrate to enter from the other side of the active site. T. fusca OSBS was more tolerant of mutations at residues that were critical for activity in E. coli OSBS. Also, replacing active site amino acids found in one protein with the amino acids that occur at the same place in the other protein reduces the catalytic efficiency. Thus, the extraordinary divergence between these proteins does not appear to reflect a higher tolerance of mutations. Instead, large deletions outside the active site were accompanied by alteration of active site size and electrostatic interactions, resulting in small but significant differences in ligand binding.


Assuntos
Actinomycetales/enzimologia , Evolução Biológica , Carbono-Carbono Liases/metabolismo , Escherichia coli/enzimologia , Magnésio/metabolismo , Sítios de Ligação , Carbono-Carbono Liases/química , Carbono-Carbono Liases/genética , Catálise , Domínio Catalítico , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação/genética , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
5.
Biochemistry ; 52(1): 228-38, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23214420

RESUMO

The substrate specificities of two incorrectly annotated enzymes belonging to cog3964 from the amidohydrolase superfamily were determined. This group of enzymes are currently misannotated as either dihydroorotases or adenine deaminases. Atu3266 from Agrobacterium tumefaciens C58 and Oant2987 from Ochrobactrum anthropi ATCC 49188 were found to catalyze the hydrolysis of acetyl-(R)-mandelate and similar esters with values of k(cat)/K(m) that exceed 10(5) M(-1) s(-1). These enzymes do not catalyze the deamination of adenine or the hydrolysis of dihydroorotate. Atu3266 was crystallized and the structure determined to a resolution of 2.62 Å. The protein folds as a distorted (ß/α)(8) barrel and binds two zincs in the active site. The substrate profile was determined via a combination of computational docking to the three-dimensional structure of Atu3266 and screening of a highly focused library of potential substrates. The initial weak hit was the hydrolysis of N-acetyl-D-serine (k(cat)/K(m) = 4 M(-1) s(-1)). This was followed by the progressive identification of acetyl-(R)-glycerate (k(cat)/K(m) = 4 × 10(2) M(-1) s(-1)), acetyl glycolate (k(cat)/K(m) = 1.3 × 10(4) M(-1) s(-1)), and ultimately acetyl-(R)-mandelate (k(cat)/K(m) = 2.8 × 10(5) M(-1) s(-1)).


Assuntos
Agrobacterium tumefaciens/enzimologia , Amidoidrolases/química , Amidoidrolases/metabolismo , Di-Hidro-Orotase/química , Di-Hidro-Orotase/metabolismo , Ochrobactrum anthropi/enzimologia , Agrobacterium tumefaciens/química , Domínio Catalítico , Cristalografia por Raios X , Glicina/análogos & derivados , Glicina/química , Glicina/metabolismo , Modelos Moleculares , Ochrobactrum anthropi/química , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Conformação Proteica , Especificidade por Substrato
8.
J Struct Funct Genomics ; 8(2-3): 121-40, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18058037

RESUMO

The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.


Assuntos
Genômica , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Animais , Cristalografia por Raios X , Humanos , Família Multigênica , Fosfoproteínas Fosfatases/classificação , Fosfoproteínas Fosfatases/fisiologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...