Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Discov Today ; 23(5): 1089-1098, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29374534

RESUMO

Thymoquinone (TQ), the active ingredient of black seed, is a promising anticancer molecule that inhibits cancer cell growth and progression in vitro and in vivo. Despite the promising anticancer activities of TQ, its translation to the clinic is limited by its poor bioavailability and hydrophobicity. As such, we and others encapsulated TQ in nanoparticles to improve its delivery and limit undesirable cytotoxicity. These TQ-nanoparticle formulations showed improved anticancer and anti-inflammatory activities when compared with free TQ. Here, we provide an overview of the various TQ-nanoparticle formulations, highlight their superior efficacy and discuss up-to-date solutions to further enhance TQ bioavailability and anticancer activity, thus improving potential for clinical translation.


Assuntos
Antineoplásicos/administração & dosagem , Benzoquinonas/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Benzoquinonas/uso terapêutico , Humanos , Nanopartículas/uso terapêutico , Nanotecnologia
2.
Molecules ; 22(2)2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28208712

RESUMO

Considered as the second deadliest disease globally, cancer has captured the attention of researchers who have been trying with perseverance to decode its hidden aspects, to find new prognosis methods, and to develop better and more effective treatments. Plants have continuously offered an excess of unique secondary metabolites with remarkable biological applications. Alkaloids, one of the most abundant metabolites, constitute a large conglomerate of basic heterocyclic nitrogen-containing natural compounds which are normally produced by plants as toxic substances. Out of the 27,000 different alkaloids, more than 17,000 have displayed diversified pharmacological properties including anticancer activities. These metabolites have been classified either according to their chemical structures or their taxonomic origin. None of the researched alkaloids have been classified according to their molecular mechanism of action against cancer. In fact, only a fraction of the tremendous number of anticancer alkaloids has been copiously mentioned in journals. Here, we aim to provide a summary of the literature on some of the promising anticancer alkaloids that have not been well discussed previously and to classify them according to their molecular mechanisms of action. This review will provide a better understanding of the anticancer mechanisms of these promising natural products that are a rich reservoir for drug discovery.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Humanos , Plantas Medicinais/química , Pesquisa , Transdução de Sinais/efeitos dos fármacos
3.
Cancer Biol Ther ; 17(11): 1139-1148, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27690730

RESUMO

Recently, we showed that the metal chelator TPEN targets colon cancer cells through redox cycling of copper. Here, we studied the DNA damage potential of TPEN and deciphered the role of Chk1, ATM and DNA-PK in TPEN-induced toxicity in 3 human colon cancer cell lines, HCT116, SW480 and HT29. We also investigated the role of reactive oxygen species (ROS) in TPEN-induced DNA damage. TPEN reduced cell viability in a dose- and time-dependent manner. Cytotoxicity was associated with significant DNA damage and higher expression of γ-H2AX protein and activation of ATM/ATR signaling pathway. Cell death by TPEN was dependent on ROS generation as evidenced by the reversal of cell viability, and DNA damage and the abrogation of γ-H2AX levels in the presence of antioxidants. Treatment with antioxidants, however, failed to reverse cytotoxicity at high TPEN concentrations (10µM). TPEN-induced cell death was also dependent on the redox cycling of copper since the copper chelator neocuproine inhibited DNA damage and reduced pChk1, γ-H2AX, and ATM protein expression. Cell death by low TPEN concentrations, involved ATM/ATR signaling in all 3 cell lines, since pre-incubation with specific inhibitors of ATM and DNA-PK led to the recovery of cells from TPEN-induced DNA damage. In addition, siRNA silencing of Chk1, DNA-PK and ATM abrogated the expression of γ-H2AX and reversed cell death, suggesting that Chk1 and DNA-PK mediate TPEN-induced cytotoxicity in colon cancer cells. This study shows for the first time the involvement of Chk1, DNA-PK and ATM in TPEN-induced DNA damage and confirms our previous findings that ROS generation and the redox cycling of copper in response to TPEN are the main mechanisms by which this compound induces cell death in human colon cancer cells. Inhibition of ATM or DNA-PK did not reverse cytotoxicity at high TPEN concentrations that cause excessive levels of ROS and irreversible cellular damage.


Assuntos
Quinase 1 do Ponto de Checagem/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Dano ao DNA , Proteína Quinase Ativada por DNA/genética , Etilenodiaminas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/metabolismo , Quelantes/farmacologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Proteína Quinase Ativada por DNA/metabolismo , Humanos , Transdução de Sinais , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...