Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Haptics ; 13(1): 197-203, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31995500

RESUMO

Haptic shared control enables a human operator and an autonomous controller to share the control of a robotic system using haptic active constraints. It has been used in robotic teleoperation for different purposes, such as navigating along paths minimizing the torques requested to the manipulator or avoiding possibly dangerous areas of the workspace. However, few works have focused on using these ideas to account for the user's comfort. In this article, we present an innovative haptic-enabled shared control approach aimed at minimizing the user's workload during a teleoperated manipulation task. Using an inverse kinematic model of the human arm and the rapid upper limb assessment (RULA) metric, the proposed approach estimates the current user's comfort online. From this measure and an a priori knowledge of the task, we then generate dynamic active constraints guiding the users towards a successful completion of the task, along directions that improve their posture and increase their comfort. Studies with human subjects show the effectiveness of the proposed approach, yielding a 30% perceived reduction of the workload with respect to using standard guided human-in-the-loop teleoperation.


Assuntos
Ergonomia , Retroalimentação Sensorial , Robótica , Telemetria , Percepção do Tato , Fenômenos Biomecânicos , Desenho de Equipamento , Feminino , Humanos , Masculino , Sistemas Homem-Máquina , Interface Usuário-Computador
2.
Front Neurol ; 8: 28, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28265255

RESUMO

Traumatic brain injury (TBI) is characterized by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. The primary insult to the brain initiates secondary injury cascades consisting of multiple complex biochemical responses of the brain that significantly influence the overall severity of the brain damage and clinical sequelae. The use of mesenchymal stem cells (MSCs) offers huge potential for application in the treatment of TBI. MSCs have immunosuppressive properties that reduce inflammation in injured tissue. As such, they could be used to modulate the secondary mechanisms of injury and halt the progression of the secondary insult in the brain after injury. Particularly, MSCs are capable of secreting growth factors that facilitate the regrowth of neurons in the brain. The relative abundance of harvest sources of MSCs also makes them particularly appealing. Recently, numerous studies have investigated the effects of infusion of MSCs into animal models of TBI. The results have shown significant improvement in the motor function of the damaged brain tissues. In this review, we summarize the recent advances in the application of MSCs in the treatment of TBI. The review starts with a brief introduction of the pathophysiology of TBI, followed by the biology of MSCs, and the application of MSCs in TBI treatment. The challenges associated with the application of MSCs in the treatment of TBI and strategies to address those challenges in the future have also been discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA