Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 276(Pt 2): 134061, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39043289

RESUMO

The conversion of lignin into bioactive compounds through selective organic synthesis methods represents a promising frontier in the pursuit of sustainable raw materials and green chemistry. This review explores the versatility of lignin-derived bioactive compounds, ranging from their application in drug discovery to their role in the development of biodegradable materials. Despite notable advancements, the synthesis routes and yields of highly bioactive molecules from lignin still require further exploration and improvement. This review provides an in-depth examination of the progress made in understanding the complex structure of lignin and developing innovative approaches to exploit its potential. Specifically, the types of lignins covered include softwood Kraft lignin, hardwood organosolv lignin, and soda lignin. This work is divided into three parts: first, the transformation of lignin into bioactive molecules with chemically active centres and functionalised hydroxyl groups through depolymerisation; second, kinetic modelling techniques essential for understanding the chemical kinetics of lignin and enabling significant scaling up in the conversion of organic molecules; third, efficient catalytic pathways for synthesising molecules with anticancer and antibacterial properties. In conclusion, this comprehensive review spurs further investigations into lignin-derived bioactive compounds, their applications, and the advancement of sustainable processes.


Assuntos
Lignina , Lignina/química , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Técnicas de Química Sintética , Cinética , Polimerização , Humanos
2.
Int J Biol Macromol ; 209(Pt A): 1048-1053, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35447264

RESUMO

In this research, a magnetic reusable nickel nanoparticle (NiNPs) supporting materials were prepared for cellulase enzyme immobilization. The immobilized cellulase showed high activity recovery, large & fast immobilization capacity and improved pH & temperature tolerance. The excellent stability and reusability enabled the immobilized cellulase to retain 84% of its initial activity after ten cycles. At 2 mg/mL enzyme concentration, highest 93% immobilization efficiency was achieved within two hours of immobilization. When the treatment temperature reached 40 °C and pH 5, the immobilized cellulase exhibited highest residual activity. The immobilized cellulase could be separated from the solution by a magnetic force. This study introduced a novel supporting material for cellulase immobilization, and the immobilized cellulase poses a great potential in the hydrolysis of lignocellulosic biomass which can used as an easily applicable and sustainable pre-treatment step for advanced biofuel production.


Assuntos
Celulase , Nanopartículas , Biomassa , Celulase/química , Estabilidade Enzimática , Enzimas Imobilizadas/química , Concentração de Íons de Hidrogênio , Hidrólise , Lignina , Fenômenos Magnéticos , Níquel , Temperatura
3.
Int J Biol Macromol ; 198: 147-156, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34971642

RESUMO

This article demonstrates the development of nanofibrous cloths by electrospinning of renewable materials, i.e., curcumin-loaded 90% cellulose acetate (CA)/10% poly(ε-caprolactone) (PCL), for applications in regenerative medicine. The CA is derived from the biomass waste of the oil palm plantation (empty fruit bunch). The nanofiber scaffolds are characterized for the fiber morphology, microstructure, thermal properties, and wettability. The optimized smooth and bead-free electrospun fiber cloth contains 90% CA and 10% PCL in two curcumin compositions (0.5 and 1 wt%). The role of curcumin is shown to be two-fold: the first is its function as a drug and the second is its role in lowering the water contact angle and increasing the hydrophilicity. The hydrophilicity enhancements are related to the hydrogen bonding between the components. The enhanced hydrophilicity contributed to improve the swelling behavior of the scaffolds; the CA/PCL/Cur (0.5%) and the CA/PCL/Cur (1.0%) showed swelling of ~700 and 950%, respectively, in phosphate-buffered saline (PBS). The drug-release studies revealed the highest cumulative drug release of 60% and 78% for CA/PCL/Cur (0.5%) and CA/PCL/Cur (1.0%) nanofibers, respectively. The in-vitro studies showed that CA/PCL/Cur (0.5 wt%) and CA/PCL/Cur (1.0 wt%) nanofiber scaffolds facilitate a higher proliferation and expression of actin in fibroblasts than those scaffolds without curcumin for wound healing applications.


Assuntos
Nanofibras
4.
Sci Total Environ ; 768: 145471, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33736330

RESUMO

In this research investigation, three microalgal species were screened (Pleurosigma sp., Amphora sp., and Amphiprora sp.) for lipid content before choosing the potential microalgae for biodiesel production. It was found that the lipid content of Amphiprora sp. was 41.48 ± 0.18%, which was higher than the Pleurosigma sp. (27.3 ± 0.8%) and Amphora sp. (22.49 ± 0.21%). The diatom microalga, Amphiprora sp. was isolated and exposed to a controlled environment. Two different media were prepared, and the main research was on the SiO2-NP medium as the cell wall of diatom was made up of silica. Essential growth parameters were studied such as dry cell weight and chlorophyll a content. The results revealed that Amphiprora sp. cultured in the modified medium showed a higher biomass yield and growth rate in all the analyses. In Soxhlet extraction method, biodiesel yield of Amphiprora sp. in modified medium under 24 µmol m-2 s-1 of light intensity was 81.47 ± 1.59% when using 2% of catalyst amount with 1.5:1 volume ratio of methanol/oil in 3 h reaction time at 65 °C. Results reveled that Amphiprora sp. diatom has a higher yield of oil 52.94 ± 0.42% and can be efficiently optimized with further studies with modified nanomaterial culture medium. The present research revealed the series of experiments on microalgal lipid transesterification and in future investigation different types of nanomaterials should be used in culture medium to identify the lipid production in microalgal cells.


Assuntos
Diatomáceas , Microalgas , Biocombustíveis/análise , Biomassa , Clorofila A , Lipídeos , Nutrientes , Dióxido de Silício
5.
J Biotechnol ; 327: 86-96, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33421508

RESUMO

Biomass and lipid production by the marine diatom Chaetoceros affinis were characterized under continuous light with aeration. Media based on palm oil mill effluent (POME; 10, 20 and 30 % v/v in distilled water) were used together with a standard control medium. The maximum biomass concentration on day 12 of batch cultures in control medium was 821 ± 71 mg L-1. Under identical conditions, in the best POME medium (20 % POME v/v in distilled water with other inorganic components), the biomass concentration was reduced by ∼11 % to 734 ± 66 mg L-1. The lipid content of the biomass grown in the control medium was 50.8 ± 4.5 % by dry weight, but was a little lower (48.9 ± 4.1 % by dry wt) in the above specified best POME medium. In the best POME medium, oleic acid was the major fatty acid (72.3 ± 5.2 % by weight) in the total lipids extracted from the biomass and monounsaturated fatty acids were the main type of fatty acids (74.6 ± 5.2 %). POME levels of >20 % in the medium suppressed both biomass and lipid production relative to the medium with 20 % POME.


Assuntos
Diatomáceas , Resíduos Industriais , Resíduos Industriais/análise , Lipídeos , Óleo de Palmeira , Óleos de Plantas
6.
Mater Sci Eng C Mater Biol Appl ; 96: 337-346, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30606541

RESUMO

Far-flung evolution in tissue engineering enabled the development of bioactive and biodegradable materials to generate biocomposite nanofibrous scaffolds for bone repair and replacement therapies. Polymeric bioactive nanofibers are to biomimic the native extracellular matrix (ECM), delivering tremendous regenerative potentials for drug delivery and tissue engineering applications. It's been known from few decades that Zinc oxide (ZnO) nanoparticles are enhancing bone growth and providing proliferation of osteoblasts when incorporated with hydroxyapatite (HAp). We attempted to investigate the interaction between the human foetal osteoblasts (hFOB) with ZnO doped HAp incorporated biocomposite poly(L-lactic acid)-co-poly(ε-caprolactone) and silk fibroin (PLACL/SF) nanofibrous scaffolds for osteoblasts mineralization in bone tissue regeneration. The present study, we doped ZnO with HAp (ZnO(HAp) using the sol-gel ethanol condensation technique. The properties of PLACL/SF/ZnO(HAp) biocomposite nanofibrous scaffolds enhanced with doped and blended ZnO/HAp were characterized using Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Contact angle and Tensile studies to determine the morphology, functionality, wettability and stability. The in vitro study results showed that the addition of ZnO and HAp enhances the secretion of bone mineral matrix (98%) with smaller fiber diameter (139.4 ±â€¯27 nm) due to the presence of silk fibroin showing potential tensile properties (322.4%), and increased the proliferation of osteoblasts for bone tissue regeneration.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Durapatita , Nanofibras/química , Osteoblastos/metabolismo , Alicerces Teciduais/química , Óxido de Zinco , Células Cultivadas , Durapatita/química , Durapatita/farmacologia , Matriz Extracelular/química , Humanos , Osteoblastos/citologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA