Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Iran J Otorhinolaryngol ; 34(123): 171-178, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36035646

RESUMO

Introduction: Olfactory training is accounted as a significantly beneficial therapy for hyposmia or anosmia. There is some evidence about methylxanthine usage for this issue. In the present study, we have investigated the effects of topical aminophylline in hyposmic and anosmic patients. Materials and Methods: In this clinical trial study, patients were randomly divided into two groups (n= 20/each), the case group was given aminophylline drops over a three-month period (using the contents of the vial aminophylline in the form of nasal drops, 250 micrograms daily) with olfactory training and the control group was given normal saline drops with olfactory training over a three-month period. The olfactory capacities were assessed before the start and after the completion of treatments using a valid and reliable smell identification test. Results: In the saline and aminophylline groups, the mean ± SD relative changes in SIT score were 0.55±0.31 and 0.85±0.56, respectively. As a result, the SIT score in the saline group climbed by 55 percent but increased by 85 percent in the aminophylline group. The difference in SIT score between pre- and post-test was meaningful in both groups (P< 0.001). The aminophylline group scored significantly higher according to the marginal longitudinal regression model, adjusting baseline parameters. Conclusions: Intranasal aminophylline plus olfactory training significantly improved SIT scores in severe hyposmia or anosmia. Hypothetically, these effects are mediated through changes in cAMP and cGMP.

2.
J Proteome Res ; 19(12): 4747-4753, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33124832

RESUMO

The Chromosome-Centric Human Proteome Project (C-HPP) aims at the identification of missing proteins (MPs) and the functional characterization of functionally unannotated PE1 (uPE1) proteins. A major challenge in addressing this goal is that many human proteins and MPs are silent in adult cells. A promising approach to overcome such challenge is to exploit the advantage of novel tools such as pluripotent stem cells (PSCs), which are capable of differentiation into three embryonic germ layers, namely, the endoderm, mesoderm, and ectoderm. Here we present several examples of how the Human Y Chromosome Proteome Project (Y-HPP) benefited from this approach to meet C-HPP goals. Furthermore, we discuss how integrating CRISPR engineering, human-induced pluripotent stem cell (hiPSC)-derived disease modeling systems, and organoid technologies provides a unique platform for Y-HPP and C-HPP for MP identification and the functional characterization of human proteins, especially uPE1s.


Assuntos
Células-Tronco Pluripotentes , Proteoma , Diferenciação Celular , Cromossomos Humanos Y , Humanos , Proteoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA