Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Blood ; 143(10): 933-937, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38194681

RESUMO

ABSTRACT: T-ALL relapse usually occurs early but can occur much later, which has been suggested to represent a de novo leukemia. However, we conclusively demonstrate late relapse can evolve from a pre-leukemic subclone harbouring a non-coding mutation that evades initial chemotherapy.


Assuntos
Leucemia-Linfoma de Células T do Adulto , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Mutação , Recidiva , Doença Crônica , Células Clonais
2.
Am J Respir Crit Care Med ; 208(8): 879-895, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37676930

RESUMO

Rationale: Immune dysregulation is a common feature of pulmonary arterial hypertension (PAH). Histone deacetylase (HDAC)-dependent transcriptional reprogramming epigenetically modulates immune homeostasis and is a novel disease-oriented approach in modern times. Objectives: To identify a novel functional link between HDAC and regulatory T cells (Tregs) in PAH, aiming to establish disease-modified biomarkers and therapeutic targets. Methods: Peripheral blood mononuclear cells were isolated from patients with idiopathic PAH (IPAH) and rodent models of pulmonary hypertension (PH): monocrotaline rats, Sugen5416-hypoxia rats, and Treg-depleted mice. HDAC inhibitor vorinostat (suberoylanilide hydroxamic acid, SAHA) was used to examine the immune modulatory effects in vivo, ex vivo, and in vitro. Measurements and Main Results: Increased HDAC expression was associated with reduced Foxp3+ Tregs and increased PD-1 (programmed cell death-1) signaling in peripheral blood mononuclear cells from patients with IPAH. SAHA differentially modified a cluster of epigenetic-sensitive genes and induced Foxp3+ Treg conversion in IPAH T cells. Rodent models recapitulated these epigenetic aberrations and T-cell dysfunction. SAHA attenuated PH phenotypes and restored FOXP3 transcription and Tregs in PH rats; interestingly, the effects were more profound in female rats. Selective depletion of CD25+ Tregs in Sugen5416-hypoxia mice neutralized the effects of SAHA. Furthermore, SAHA inhibited endothelial cytokine/chemokine release upon stimulation and subsequent immune chemotaxis. Conclusions: Our results indicated HDAC aberration was associated with Foxp3+ Treg deficiency and demonstrated an epigenetic-mediated mechanism underlying immune dysfunction in PAH. Restoration of Foxp3+ Tregs by HDAC inhibitors is a promising approach to resolve pulmonary vascular pathology, highlighting the potential benefit of developing epigenetic therapies for PAH.

3.
J Clin Oncol ; 41(19): 3545-3556, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37098241

RESUMO

PURPOSE: Failure to respond to induction chemotherapy portends a poor outcome in childhood acute lymphoblastic leukemia (ALL) and is more frequent in T-cell ALL (T-ALL) than B-cell ALL. We aimed to address the limited understanding of clinical and genetic factors that influence outcome in a cohort of patients with T-ALL induction failure (IF). METHODS: We studied all cases of T-ALL IF on two consecutive multinational randomized trials, UKALL2003 and UKALL2011, to define risk factors, treatment, and outcomes. We performed multiomic profiling to characterize the genomic landscape. RESULTS: IF occurred in 10.3% of cases and was significantly associated with increasing age, occurring in 20% of patients age 16 years and older. Five-year overall survival (OS) rates were 52.1% in IF and 90.2% in responsive patients (P < .001). Despite increased use of nelarabine-based chemotherapy consolidated by hematopoietic stem-cell transplant in UKALL2011, there was no improvement in outcome. Persistent end-of-consolidation molecular residual disease resulted in a significantly worse outcome (5-year OS, 14.3% v 68.5%; HR, 4.10; 95% CI, 1.35 to 12.45; P = .0071). Genomic profiling revealed a heterogeneous picture with 25 different initiating lesions converging on 10 subtype-defining genes. There was a remarkable abundance of TAL1 noncoding lesions, associated with a dismal outcome (5-year OS, 12.5%). Combining TAL1 lesions with mutations in the MYC and RAS pathways produces a genetic stratifier that identifies patients highly likely to fail conventional therapy (5-year OS, 23.1% v 86.4%; HR, 6.84; 95% CI, 2.78 to 16.78; P < .0001) and who should therefore be considered for experimental agents. CONCLUSION: The outcome of IF in T-ALL remains poor with current therapy. The lack of a unifying genetic driver suggests alternative approaches, particularly using immunotherapy, are urgently needed.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Adulto Jovem , Adolescente , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Resultado do Tratamento , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Linfócitos T , Prognóstico
4.
Blood ; 140(1): 25-37, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35507686

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of immature T lymphocytes, associated with higher rates of induction failure compared with those in B cell acute lymphoblastic leukemia. The potent immunotherapeutic approaches applied in B cell acute lymphoblastic leukemia, which have revolutionized the treatment paradigm, have proven more challenging in T-ALL, largely due to a lack of target antigens expressed on malignant but not healthy T cells. Unlike B cell depletion, T-cell aplasia is highly toxic. Here, we show that the chemokine receptor CCR9 is expressed in >70% of cases of T-ALL, including >85% of relapsed/refractory disease, and only on a small fraction (<5%) of normal T cells. Using cell line models and patient-derived xenografts, we found that chimeric antigen receptor (CAR) T-cells targeting CCR9 are resistant to fratricide and have potent antileukemic activity both in vitro and in vivo, even at low target antigen density. We propose that anti-CCR9 CAR-T cells could be a highly effective treatment strategy for T-ALL, avoiding T cell aplasia and the need for genome engineering that complicate other approaches.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores de Antígenos Quiméricos , Antígenos CD19 , Humanos , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Receptores de Antígenos de Linfócitos T , Linfócitos T
5.
Cancer Discov ; 10(7): 998-1017, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32349972

RESUMO

Loss-of-function mutations of EZH2, the enzymatic component of PRC2, have been associated with poor outcome and chemotherapy resistance in T-cell acute lymphoblastic leukemia (T-ALL). Using isogenic T-ALL cells, with and without CRISPR/Cas9-induced EZH2-inactivating mutations, we performed a cell-based synthetic lethal drug screen. EZH2-deficient cells exhibited increased sensitivity to structurally diverse inhibitors of CHK1, an interaction that could be validated genetically. Furthermore, small-molecule inhibition of CHK1 had efficacy in delaying tumor progression in isogenic EZH2-deficient, but not EZH2 wild-type, T-ALL cells in vivo, as well as in a primary cell model of PRC2-mutant ALL. Mechanistically, EZH2 deficiency resulted in a gene-expression signature of immature T-ALL cells, marked transcriptional upregulation of MYCN, increased replication stress, and enhanced dependency on CHK1 for cell survival. Finally, we demonstrate this phenotype is mediated through derepression of a distal PRC2-regulated MYCN enhancer. In conclusion, we highlight a novel and clinically exploitable pathway in high-risk EZH2-mutated T-ALL. SIGNIFICANCE: Loss-of-function mutations of PRC2 genes are associated with chemotherapy resistance in T-ALL, yet no specific therapy for this aggressive subtype is currently clinically available. Our work demonstrates that loss of EZH2 activity leads to MYCN-driven replication stress, resulting in increased sensitivity to CHK1 inhibition, a finding with immediate clinical relevance.This article is highlighted in the In This Issue feature, p. 890.


Assuntos
Quinase 1 do Ponto de Checagem/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proliferação de Células , Humanos , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética
6.
Dis Model Mech ; 12(11)2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31771951

RESUMO

The search for oncogenic mutations in haematological malignancies has largely focused on coding sequence variants. These variants have been critical in understanding these complex cancers in greater detail, ultimately leading to better disease monitoring, subtyping and prognostication. In contrast, the search for oncogenic variants in the noncoding genome has proven to be challenging given the vastness of the search space, the intrinsic difficulty in assessing the impact of variants that do not code for functional proteins, and our still primitive understanding of the function harboured by large parts of the noncoding genome. Recent studies have broken ground on this quest, identifying somatically acquired and recurrent mutations in the noncoding genome that activate the expression of proto-oncogenes. In this Review, we explore some of the best-characterised examples of noncoding mutations in haematological malignancies, and highlight how a significant majority of these variants impinge on gene regulation through the formation of aberrant enhancers and promoters. We delve into the challenges faced by those that embark on a search for noncoding driver mutations, and provide a framework distilled from studies that have successfully identified such variants to overcome some of the most salient hurdles. Finally, we discuss the current therapeutic strategies being explored to target the oncogenic mechanism supported by recurrent noncoding variants. We postulate that the continued discovery and functional characterisation of somatic variants in the noncoding genome will not only advance our understanding of haematological malignancies, but offer novel therapeutic avenues and provide important insights into transcriptional regulation on a broader scale.


Assuntos
Neoplasias Hematológicas/genética , Mutação , Regiões não Traduzidas/genética , Animais , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Variação Genética , Neoplasias Hematológicas/etiologia , Humanos , Regiões Promotoras Genéticas , Splicing de RNA
7.
J Exp Med ; 215(7): 1929-1945, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29941549

RESUMO

A substantial subset of patients with T cell acute lymphoblastic leukemia (T-ALL) develops resistance to steroids and succumbs to their disease. JDP2 encodes a bZIP protein that has been implicated as a T-ALL oncogene from insertional mutagenesis studies in mice, but its role in human T-ALL pathogenesis has remained obscure. Here we show that JDP2 is aberrantly expressed in a subset of T-ALL patients and is associated with poor survival. JDP2 is required for T-ALL cell survival, as its depletion by short hairpin RNA knockdown leads to apoptosis. Mechanistically, JDP2 regulates prosurvival signaling through direct transcriptional regulation of MCL1. Furthermore, JDP2 is one of few oncogenes capable of initiating T-ALL in transgenic zebrafish. Notably, thymocytes from rag2:jdp2 transgenic zebrafish express high levels of mcl1 and demonstrate resistance to steroids in vivo. These studies establish JDP2 as a novel oncogene in high-risk T-ALL and implicate overexpression of MCL1 as a mechanism of steroid resistance in JDP2-overexpressing cells.


Assuntos
Oncogenes , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Repressoras/genética , Proteínas de Peixe-Zebra/genética , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Pré-Escolar , Dexametasona/farmacologia , Modelos Animais de Doenças , Elementos Facilitadores Genéticos/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Humanos , Lactente , Camundongos , Mutagênese Insercional/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Transplante de Neoplasias , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Repressoras/metabolismo , Elementos de Resposta/genética , Timócitos/efeitos dos fármacos , Timócitos/metabolismo , Resultado do Tratamento , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
10.
Blood ; 129(24): 3221-3226, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28270453

RESUMO

Somatic mutations within noncoding genomic regions that aberrantly activate oncogenes have remained poorly characterized. Here we describe recurrent activating intronic mutations of LMO2, a prominent oncogene in T-cell acute lymphoblastic leukemia (T-ALL). Heterozygous mutations were identified in PF-382 and DU.528 T-ALL cell lines in addition to 3.7% of pediatric (6 of 160) and 5.5% of adult (9 of 163) T-ALL patient samples. The majority of indels harbor putative de novo MYB, ETS1, or RUNX1 consensus binding sites. Analysis of 5'-capped RNA transcripts in mutant cell lines identified the usage of an intermediate promoter site, with consequential monoallelic LMO2 overexpression. CRISPR/Cas9-mediated disruption of the mutant allele in PF-382 cells markedly downregulated LMO2 expression, establishing clear causality between the mutation and oncogene dysregulation. Furthermore, the spectrum of CRISPR/Cas9-derived mutations provides important insights into the interconnected contributions of functional transcription factor binding. Finally, these mutations occur in the same intron as retroviral integration sites in gene therapy-induced T-ALL, suggesting that such events occur at preferential sites in the noncoding genome.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Elementos de Resposta , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Regulação Leucêmica da Expressão Gênica , Humanos , Células Jurkat , Masculino , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia
11.
Nat Commun ; 8: 14385, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28181482

RESUMO

The non-coding regions of tumour cell genomes harbour a considerable fraction of total DNA sequence variation, but the functional contribution of these variants to tumorigenesis is ill-defined. Among these non-coding variants, somatic insertions are among the least well characterized due to challenges with interpreting short-read DNA sequences. Here, using a combination of Chip-seq to enrich enhancer DNA and a computational approach with multiple DNA alignment procedures, we identify enhancer-associated small insertion variants. Among the 102 tumour cell genomes we analyse, small insertions are frequently observed in enhancer DNA sequences near known oncogenes. Further study of one insertion, somatically acquired in primary leukaemia tumour genomes, reveals that it nucleates formation of an active enhancer that drives expression of the LMO2 oncogene. The approach described here to identify enhancer-associated small insertion variants provides a foundation for further study of these abnormalities across human cancers.


Assuntos
Elementos Facilitadores Genéticos , Genoma Humano , Mutagênese Insercional/genética , Oncogenes , Adolescente , Adulto , Sequência de Bases , Linhagem Celular Tumoral , Criança , Pré-Escolar , Regulação Leucêmica da Expressão Gênica , Humanos , Lactente , Leucemia-Linfoma de Células T do Adulto/genética , Reprodutibilidade dos Testes , Adulto Jovem
12.
Oncotarget ; 7(28): 44505-44521, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27283986

RESUMO

Previous studies have associated the overexpression of histone deacetylase 2 (HDAC2) and the presence of TP53 mutations with the progression to advanced stage drug resistant colorectal cancer (CRC). However, the mechanistic link between HDAC2 expression and the TP53 mutational status has remained unexplored. Here, we investigated the function of HDAC2 in drug resistance by assessing the synergistic effects of DNA-targeted chemotherapeutic agents and HDAC inhibitors (HDACis) on two TP53-mutated colorectal adenocarcinoma CRC cell lines (SW480 and HT-29) and on the TP53-wild type carcinoma cell line (HCT116 p53+/+) and its TP53 deficient sub-line (HCT116 p53-/-). We showed that in the untreated SW480 and HT-29 cells the steady-state level of HDAC2 was low compared to a TP53-wild type carcinoma cell line (HCT116 p53+/+). Increased expression of HDAC2 correlated with drug resistance, and depletion by shRNA sensitised the multi-drug resistance cell line HT-29 to CRC chemotherapeutic drugs such as 5-fluorouracil (5-FU) and oxaliplatin (Oxa). Combined treatment with the HDACi suberoylanilide hydroxamic acid plus 5-FU or Oxa reduced the level of HDAC2 expression, modified chromatin structure and induced mitotic cell death in HT-29 cells. Non-invasive bioluminescence imaging revealed significant reductions in xenograft tumour growth with HDAC2 expression level reduced to <50% in treated animals. Elevated levels of histone acetylation on residues H3K9, H4K12 and H4K16 were also found to be associated with resistance to VPA/Dox or SAHA/Dox treatment. Our results suggest that HDAC2 expression rather than the p53 mutation status influences the outcome of combined treatment with a HDACi and DNA-damaging agents in CRC.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Histona Desacetilase 2/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Acetilação/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Sinergismo Farmacológico , Fluoruracila/administração & dosagem , Fluoruracila/farmacologia , Células HCT116 , Células HT29 , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/administração & dosagem , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Ácidos Hidroxâmicos/farmacologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Compostos Organoplatínicos/administração & dosagem , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Vorinostat , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
14.
Aging (Albany NY) ; 7(9): 629-47, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26363853

RESUMO

Due to its role in regulation of mitochondrial function, PGC1α is emerging as an important player in ageing and neurodegenerative disorders. PGC1α exerts its neuroprotective effects by promoting mitochondrial biogenesis (MB) and functioning. However, the precise regulatory role of PGC1α in the control of mitochondrial dynamics (MD) and neurotoxicity is still unknown. Here we elucidate the role of PGC1αin vitro and in vivo in the regulatory context of MB and MD in response to lead (II) acetate as a relevant model of neurotoxicity. We show that there is an adaptive response (AR) to lead, orchestrated by the BAP31-calcium signalling system operating between the ER and mitochondria. We find that this hormetic response is controlled by a cell-tolerated increase of PGC1α expression, which in turn induces a balanced expression of fusion/fission genes by binding to their promoters and implying its direct role in regulation of MD. However, dysregulation of PGC1α expression through either stable downregulation or overexpression, renders cells more susceptible to lead insult leading to mitochondrial fragmentation and cell death. Our data provide novel evidence that PGC1α expression is a key regulator of MD and the maintenance of tolerated PGC1α expression may offer a promising strategy for neuroprotective therapies.


Assuntos
Intoxicação do Sistema Nervoso por Chumbo/genética , Fatores de Transcrição/genética , Envelhecimento/genética , Animais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Neurônios Dopaminérgicos/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Intoxicação do Sistema Nervoso por Chumbo/fisiopatologia , Proteínas de Membrana/genética , Dinâmica Mitocondrial/genética , Fármacos Neuroprotetores/farmacologia , Biogênese de Organelas , Compostos Organometálicos/toxicidade , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/biossíntese
15.
Environ Health Perspect ; 123(5): 484-92, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25574600

RESUMO

BACKGROUND: Aberrant histone acetylation has been observed in carcinogenesis and cellular transformation associated with arsenic exposure; however, the molecular mechanisms and cellular outcomes of such changes are poorly understood. OBJECTIVE: We investigated the impact of tolerated and toxic arsenic trioxide (As2O3) exposure in human embryonic kidney (HEK293T) and urothelial (UROtsa) cells to characterize the alterations in histone acetylation and gene expression as well as the implications for cellular transformation. METHODS: Tolerated and toxic exposures of As2O3 were identified by measurement of cell death, mitochondrial function, cellular proliferation, and anchorage-independent growth. Histone extraction, the MNase sensitivity assay, and immunoblotting were used to assess global histone acetylation levels, and gene promoter-specific interactions were measured by chromatin immunoprecipitation followed by reverse-transcriptase polymerase chain reaction. RESULTS: Tolerated and toxic dosages, respectively, were defined as 0.5 µM and 2.5 µM As2O3 in HEK293T cells and 1 µM and 5 µM As2O3 in UROtsa cells. Global hypoacetylation of H3K9 at 72 hr was observed in UROtsa cells following tolerated and toxic exposure. In both cell lines, tolerated exposure alone led to H3K9 hyperacetylation and E2F1 binding at the FOS promoter, which remained elevated after 72 hr, contrary to global H3K9 hypoacetylation. Thus, promoter-specific H3K9 acetylation is a better predictor of cellular transformation than are global histone acetylation patterns. Tolerated exposure resulted in an increased expression of the proto-oncogenes FOS and JUN in both cell lines at 72 hr. CONCLUSION: Global H3K9 hypoacetylation and promoter-specific hyperacetylation facilitate E2F1-mediated FOS induction in As2O3-induced cellular transformation.


Assuntos
Fator de Transcrição E2F1/metabolismo , Óxidos/toxicidade , Acetilação/efeitos dos fármacos , Trióxido de Arsênio , Arsenicais , Linhagem Celular , Imunoprecipitação da Cromatina , Cromatografia de Fase Reversa , Fator de Transcrição E2F1/genética , Células HEK293 , Histonas/metabolismo , Humanos , Immunoblotting , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...