Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 345: 118685, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517093

RESUMO

Land subsidence is a huge challenge that land and water resource managers are still facing. Radar datasets revolutionize the way and give us the ability to provide information about it, thanks to their low cost. But identifying the most important drivers need for the modeling process. Machine learning methods are especially top of mind amid the prediction studies of natural hazards and hit new heights over the last couple of years. Hence, putting an efficient approach like integrated radar-and-ensemble-based method into practice for land subsidence rate simulation is not available yet which is the main aim of this research. In this study, the number of 52 pairs of radar images were used to identify subsidence from 2014 to 2019. Then, using the simulated annealing (SA) algorithm the key variables affecting land subsidence were identified among the topographical parameters, aquifer information, land use, hydroclimatic variables, and geological and soil factors. Afterward, three individual machine learning models (including Support Vector Machine, SVM; Gaussian Process, GP; Bayesian Additive Regression Tree, BART) along with three ensemble learning approaches were considered for land subsidence rate modeling. The results indicated that the subsidence varies between 0 and 59 cm in this period. Comparing the Radar results with the permanent geodynamic station exhibited a very strong correlation between the ground station and the radar images (R2 = 0.99, RMSE = 0.008). Parsing the input data by the SA indicated that key drivers are precipitation, elevation, percentage of fine-grained materials in the saturated zone, groundwater withdrawal, distance to road, groundwater decline, and aquifer thickness. The performance comparison indicated that ensemble models perform better than individual models, and among ensemble models, the nonlinear ensemble approach (i.e., BART model combination) provided better performance (RMSE = 0.061, RSR = 0.42, R2 = 0.83, PBIAS = 2.2). Also, the distribution shape of the probability density function in the non-linear ensemble model is much closer to the observations. Results indicated that the presence of significant fine-grained materials in unconsolidated aquifer systems can clarify the response of the aquifer system to groundwater decline, low recharge, and subsequent land subsidence. Therefore, the interaction between these factors can be very dangerous and intensify subsidence.


Assuntos
Água Subterrânea , Radar , Teorema de Bayes , Solo , Interferometria
2.
Sci Total Environ ; 877: 163419, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37040859

RESUMO

Considering the effects of dust on human health, environment, agriculture, and transportation, it is necessary to investigate dust emissions susceptibility. This study aimed to study the capability of different machine learning models in analyzing land susceptibility to dust emissions. At first, the dust-source areas were identified by examining the frequency of occurrence (FOO) of dusty days using the aerosol optical depth (AOD) of the MODIS sensor from 2000 to 2020 and field surveys. Then, the weighted subspace random forest (WSRF) model in comparison with three benchmark models-general linear model (GLM), boosted regression tree (BRT), and support vector machine (SVM)-was employed to predict land susceptibility to dust emissions and also to determine the importance of dust-drivers. The results revealed that the WSRF outperformed benchmark models. In a nutshell, the values of accuracy, Kappa, and probability of detection for all models were more than 97 %, and also the false alarm rate was less than 1 % for all models. Spatial analysis indicated a greater frequency of dust events in the outskirts of Urmia Lake (mainly in the eastern and southern parts). Furthermore, according to the map of land susceptibility to dust emissions produced by the WSRF model, about 4.5 %, 2.8 %, 1.8 %, 0.8 %, and 0.2 % of the salt land, rangeland, agricultural, dry-farming, and barren lands, respectively, associated with high and very high degrees of dust emissions susceptibility. Therefore, this study provided in-depth insights into the applicability of the ensemble model, WSRF, to precisely map dust emissions susceptibility.

3.
Sci Rep ; 10(1): 18114, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093648

RESUMO

Catastrophic floods cause deaths, injuries, and property damages in communities around the world. The losses can be worse among those who are more vulnerable to exposure and this can be enhanced by communities' vulnerabilities. People in undeveloped and developing countries, like Iran, are more vulnerable and may be more exposed to flood hazards. In this study we investigate the vulnerabilities of 1622 schools to flood hazard in Chaharmahal and Bakhtiari Province, Iran. We used four machine learning models to produce flood susceptibility maps. The analytic hierarchy process method was enhanced with distance from schools to create a school-focused flood-risk map. The results indicate that 492 rural schools and 147 urban schools are in very high-risk locations. Furthermore, 54% of rural students and 8% of urban students study schools in locations of very high flood risk. The situation should be examined very closely and mitigating actions are urgently needed.

4.
Sci Rep ; 10(1): 12937, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737384

RESUMO

Floods in urban environments often result in loss of life and destruction of property, with many negative socio-economic effects. However, the application of most flood prediction models still remains challenging due to data scarcity. This creates a need to develop novel hybridized models based on historical urban flood events, using, e.g., metaheuristic optimization algorithms and wavelet analysis. The hybridized models examined in this study (Wavelet-SVR-Bat and Wavelet-SVR-GWO), designed as intelligent systems, consist of a support vector regression (SVR), integrated with a combination of wavelet transform and metaheuristic optimization algorithms, including the grey wolf optimizer (GWO), and the bat optimizer (Bat). The efficiency of the novel hybridized and standalone SVR models for spatial modeling of urban flood inundation was evaluated using different cutoff-dependent and cutoff-independent evaluation criteria, including area under the receiver operating characteristic curve (AUC), Accuracy (A), Matthews Correlation Coefficient (MCC), Misclassification Rate (MR), and F-score. The results demonstrated that both hybridized models had very high performance (Wavelet-SVR-GWO: AUC = 0.981, A = 0.92, MCC = 0.86, MR = 0.07; Wavelet-SVR-Bat: AUC = 0.972, A = 0.88, MCC = 0.76, MR = 0.11) compared with the standalone SVR (AUC = 0.917, A = 0.85, MCC = 0.7, MR = 0.15). Therefore, these hybridized models are a promising, cost-effective method for spatial modeling of urban flood susceptibility and for providing in-depth insights to guide flood preparedness and emergency response services.

5.
Sci Total Environ ; 737: 139508, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32531509

RESUMO

Dust particles are transported globally. Dust storms can adversely impact both human health and the environment, but they also impact transportation infrastructure, agriculture, and industry, occasionally severely. The identification of the locations that are the primary sources of dust, especially in arid and semi-arid environments, remains a challenge as these sites are often in remote or data-scarce regions. In this study, a new method using state-of-the-art machine-learning algorithms - random forest (RF), support vector machines (SVM), and multivariate adaptive regression splines (MARS) - was evaluated for its ability to spatially model the distribution of dust-source potential in eastern Iran. To accomplish this, empirically identified dust-source locations were determined with the ozone monitoring instrument aerosol index and the Moderate-Resolution Imaging Spectroradiometer (MODIS) Deep Blue aerosol optical thickness methods. The identified areas were divided into training (70%) and validation (30%) sets. Measurements of the conditioning factors (lithology, wind speed, maximum air temperature, land use, slope angle, soil, rainfall, and land cover) were compiled for the study area and predictive models were developed. The area-under-the-receiver operating characteristics curve (AUC) and true-skill statistics (TSS) were used to validate the maps of the models' predictions. The results show that the RF algorithm performed best (AUC = 89.4% and TSS = 0.751), followed by the SVM (AUC = 87.5%, TSS = 0.73) and the MARS algorithm (AUC = 81%, TSS = 0.69). The results of the RF indicated that wind speed and land cover are the most important factors affecting dust generation. The region of highest dust-source potential that was identified by the RF is in the eastern parts of the study region. This model can be applied to other arid and semi-arid environments that experience dust storms to promote management that prevents desertification and reduces dust production.

6.
Sci Total Environ ; 719: 137336, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32135318

RESUMO

Assessment and monitoring of river morphology own an important role in river engineering; since, changes in river morphology including erosion and sedimentation affect river cross-sections and flow processes. An approach for River Morphodynamics Analysis based on Remote Sensing (RiMARS) was developed and tested on the case of Mollasadra dam construction on the Kor River, Iran. Landsat multispectral images obtained from the open USGS dataset are used to extract river morphology dynamics by the Modified Normalized Difference Water Index (MNDWI). RiMARS comes with a river extraction module which is independent of threshold segmentation methods to produce binary-level images. In addition, RiMARS is equipped with developed indices for assessing the morphological alterations. Five characteristics of river morphology (spatiotemporal Sinuosity Index (SI), Absolute Centerline Migration (ACM), Rate of Centerline Migration (RCM), River Linear Pattern (RLP), and Meander Migration Index (MMI)), are applied to quantify river morphology changes. The results indicated that the Kor River centerline underwent average annual migration of 40 cm to the southwest during 1993-2003 (pre-construction impact), 20 cm to the northeast during 2003-2011, and 40 cm to the south-west during 2011-2017 (post-construction impact). Spatially, as the Kor River runs towards the Doroudzan dam, changes in river morphology have increased from upstream to downstream; particularly evident where the river flows in a plain instead of the valley. Based on SI values, there was a 5% change in the straight sinuosity class in the pre-construction period, but an 18% decrease in the straight class during the post-construction period. Here we demonstrate the application of RiMARS in assessing the impact of dam construction on morphometric processes in Kor River, but it can be used to assess other riverine changes, including tracking the unauthorized water consumption using diverted canals. RiMARS can be applied on multispectral images.

7.
Sci Total Environ ; 699: 134230, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31522053

RESUMO

A quantitative understanding of the hydro-environmental factors that influence the occurrence of agricultural drought events would enable more strategic climate change adaptation and drought management plans. Practical drought hazard mapping remains challenging due to possible exclusion of the most pertinent drought drivers, and to the use of inadequate predictive models that cannot describe drought adequately. This research aims to develop new approaches to map agricultural drought hazard with state-of-the-art machine learning models, including classification and regression trees (CART), boosted regression trees (BRT), random forests (RF), multivariate adaptive regression splines (MARS), flexible discriminant analysis (FDA) and support vector machines (SVM). Hydro-environmental datasets were used to calculate the relative departure of soil moisture (RDSM) for eight severe droughts for drought-prone southeast Queensland, Australia, over the period 1994-2013. RDSM was then used to generate an agricultural drought inventory map. Eight hydro-environmental factors were used as potential predictors of drought. The goodness-of-fit and predictive performance of all models were evaluated using different threshold-dependent and threshold-independent methods, including the true skill statistic (TSS), Efficiency (E), F-score, and the area under the receiver operating characteristic curve (AUC-ROC). The RF model (AUC-ROC = 97.7%, TSS = 0.873, E = 0.929, F-score = 0.898) yielded the highest accuracy, while the FDA model (with AUC-ROC = 73.9%, TSS = 0.424, E = 0.719, F-score = 0.512) showed the worst performance. The plant available water holding capacity (PAWC), mean annual precipitation, and clay content were the most important variables to be used for predicting the agricultural drought. About 21.2% of the area is in high or very high drought risk classes, and therefore, warrant drought and environmental protection policies. Importantly, the models do not require data on the precipitation anomaly for any given drought year; the spatial patterns in AGH were consistent for all drought events, despite very different spatial patterns in precipitation anomaly among events. Such machine-learning approaches are able to construct an overall risk map, thus assisting in the adoption of a robust drought contingency planning measure not only for this area, but also, in other regions where drought presents a pressing challenge, including its influence on key practical dimensions of social, environmental and economic sustainability.

8.
Sci Total Environ ; 708: 135115, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31787309

RESUMO

Fog is an important component of the water cycle in northern coastal regions of Iran. Having accurate tools for mapping the precise spatial distribution of fog is vital for water harvesting within integrated water resources management in this semi-humid region. In this study, environmental variables were considered in prediction mapping of areas with high concentrations of fog in the Vazroud watershed, Iran. Fog probability maps were derived from four artificial intelligence algorithms (Generalized Linear Model, Generalized Additive Model, Generalized Boosted Model, and Generalized Dissimilarity Model). Models accuracy were assessed using Receiver Operating characteristic Curve (ROC). Three social variables were also selected according to their relevance for fog suitability mapping. Finally, Fog-water harvesting Capability Index (FCI) maps were produced by multiplying fog probability by fog suitability maps. The results showed high accuracy in fog probability mapping for the study area, with all models proving capable of identifying areas with high fog concentrations in the south and southeast. For all models, the highest values of importance were obtained for sky view factor and the lowest for slope curvature. Analytic Hierarchy Process results showed the relative importance of social conditioning factors in fog suitability mapping, with the highest weight given to distance to residential area, followed by distance to livestock buildings and distance to road. Based on the fog suitability map, southeast and southern parts of the study area are most suitable for fog water harvesting. The fog spatial distribution maps obtained can increase fog water harvesting efficiency. They also indicate areas for future study with regions where fog is a critical component in the water cycle.

9.
Sci Total Environ ; 718: 134656, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31839310

RESUMO

Widespread detrimental and long-lasting droughts are having catastrophic impacts around the globe. Researchers, organizations, and policy makers need to work together to obtain precise information, enabling timely and accurate decision making to mitigate drought impacts. In this study, a spatial modeling approach based on an adaptive neuro-fuzzy inference system (ANFIS) and several metaheuristic optimizations (ANFIS-BA, ANFIS-GA, ANFIS-ICA, ANFIS-PSO) was developed to predict the spatial occurrence of drought in a region in southeastern Queensland, Australia. In this approach, data describing the distribution of eight drought-contributing factors were prepared for input into the models to serve as independent variables. Relative departures of rainfall (RDR) and relative departures of soil moisture (RDSM) were analyzed to identify locations where drought conditions have occurred. The set of locations in the study area identified as having experienced drought conditions was randomly divided into two groups, 70% were used for training and 30% for validation. The models employed these data to generate maps that predict the locations that would be expected to experience drought. The prediction accuracy of the model-produced drought maps was scrutinized with two evaluation metrics: area under the receiver operating characteristic curve (AUC) and root mean square error (RMSE). The results demonstrate that the hybridized models (ANFIS-BA (AUCmean = 83.7%, RMSEmean = 0.236), ANFIS-GA (AUCmean = 81.62%, RMSEmean = 0.247), ANFIS-ICA (AUCmean = 82.12%, RMSEmean = 0.247), and ANFIS-PSO (AUCmean = 81.42%, RMSEmean = 0.255)) yield better predictive performance than the standalone ANFIS model (AUCmean = 71.8%, RMSEmean = 0.344). Furthermore, sensitivity analyses indicated that plant-available water capacity, the percentage of soil comprised of sand, and mean annual precipitation were the most important predictors of drought hazard. The versatility of the new approach for spatial drought modeling and the capacity of ANFIS model hybridization to improve model performance suggests great potential to assist decision makers in their formulations of drought risk, recovery, and response management, and in the development of contingency plans.

10.
Sci Total Environ ; 688: 855-866, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31255823

RESUMO

Although estimating the uncertainty of models used for modelling nitrate contamination of groundwater is essential in groundwater management, it has been generally ignored. This issue motivates this research to explore the predictive uncertainty of machine-learning (ML) models in this field of study using two different residuals uncertainty methods: quantile regression (QR) and uncertainty estimation based on local errors and clustering (UNEEC). Prediction-interval coverage probability (PICP), the most important of the statistical measures of uncertainty, was used to evaluate uncertainty. Additionally, three state-of-the-art ML models including support vector machine (SVM), random forest (RF), and k-nearest neighbor (kNN) were selected to spatially model groundwater nitrate concentrations. The models were calibrated with nitrate concentrations from 80 wells (70% of the data) and then validated with nitrate concentrations from 34 wells (30% of the data). Both uncertainty and predictive performance criteria should be considered when comparing and selecting the best model. Results highlight that the kNN model is the best model because not only did it have the lowest uncertainty based on the PICP statistic in both the QR (0.94) and the UNEEC (in all clusters, 0.85-0.91) methods, but it also had predictive performance statistics (RMSE = 10.63, R2 = 0.71) that were relatively similar to RF (RMSE = 10.41, R2 = 0.72) and higher than SVM (RMSE = 13.28, R2 = 0.58). Determining the uncertainty of ML models used for spatially modelling groundwater-nitrate pollution enables managers to achieve better risk-based decision making and consequently increases the reliability and credibility of groundwater-nitrate predictions.

11.
Sci Total Environ ; 672: 239-252, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30959291

RESUMO

Land subsidence (LS) is among the most critical environmental problems, affecting both agricultural sustainability and urban infrastructure. Existing methods often use either simple regression models or complex hydraulic models to explain and predict LS. There are few studies that identify the risk factors and predict the risk of LS using machine learning models. This study compares four tree-based machine learning models for land subsidence hazard modelling at a study area in Hamadan plain (Iran). The study also analyzes the importance of six risk factors including topography (elevation, slope), geomorphology (distance from stream, drainage density), hydrology (groundwater drawdown) and lithology on LS. Thematic layers of each variable related to the LS phenomenon are prepared and utilized as the inputs to the four tree-based machine learning models, including the Rule-Based Decision Tree (RBDT), Boosted Regression Trees (BRT), Classification And Regression Tree (CART), and the Random Forest (RF) algorithms to produce a consolidated LS hazard map. The accuracy of the generated maps is then evaluated using the area under the receiver operating characteristic curve (AUC) and the True Skill Statistics (TSS). The RF approach had the lowest predictive error for mapping the LS hazard (i.e., AUC 96.7% for training, AUC 93.8% for validation, TSS 0.912 for training, TSS 0.904 for validation) followed by BRT. Groundwater drawdown was seen to be the most influential factor that contributed to land subsidence in the present study area, followed by lithology and distance from the stream network.

12.
J Environ Manage ; 236: 466-480, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771667

RESUMO

Land subsidence caused by land use change and overexploitation of groundwater is an example of mismanagement of natural resources, yet subsidence remains difficult to predict. In this study, the relationship between land subsidence features and geo-environmental factors is investigated by comparing two machine learning algorithms (MLA): maximum entropy (MaxEnt) and genetic algorithm rule-set production (GARP) algorithms in the Kashmar Region, Iran. Land subsidence features (N = 79) were mapped using field surveys. Land use, lithology, the distance from traditional groundwater abstraction systems (Qanats), from afforestation projects, from neighboring faults, and the drawdown of groundwater level (DGL) (1991-2016) were used as predictive variables. Jackknife resampling showed that DGL, distance from afforestation projects, and distance from Qanat systems are major factors influencing land subsidence, with geology and faults being less important. The GARP algorithm outperformed the MaxEnt algorithm for all performance metrics. The performance of both models, as measured by the area under the receiver-operator characteristic curve (AUROC), decreased from 88.9-94.4% to 82.5-90.3% when DGL was excluded as a predictor, though the performance of GARP was still good to excellent even without DGL. MLAs produced maps of subsidence risk with acceptable accuracy, both with and without data on groundwater drawdown, suggesting that MLAs can usefully inform efforts to manage subsidence in data-scarce regions, though the highest accuracy requires data on changes in groundwater level.


Assuntos
Água Subterrânea , Geologia , Atividades Humanas , Irã (Geográfico) , Aprendizado de Máquina
13.
Sci Total Environ ; 664: 296-311, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743123

RESUMO

Geospatial computation, data transformation to a relevant statistical software, and step-wise quantitative performance assessment can be cumbersome, especially when considering that the entire modelling procedure is repeatedly interrupted by several input/output steps, and the self-consistency and self-adaptive response to the modelled data and the features therein are lost while handling the data from different kinds of working environments. To date, an automated and a comprehensive validation system, which includes both the cutoff-dependent and -independent evaluation criteria for spatial modelling approaches, has not yet been developed for GIS based methodologies. This study, for the first time, aims to fill this gap by designing and evaluating a user-friendly model validation approach, denoted as Performance Measure Tool (PMT), and developed using freely available Python programming platform. The considered cutoff-dependent criteria include receiver operating characteristic (ROC) curve, success-rate curve (SRC) and prediction-rate curve (PRC), whereas cutoff-independent consist of twenty-one performance metrics such as efficiency, misclassification rate, false omission rate, F-score, threat score, odds ratio, etc. To test the robustness of the developed tool, we applied it to a wide variety of geo-environmental modelling approaches, especially in different countries, data, and spatial contexts around the world including, the USA (soil digital modelling), Australia (drought risk evaluation), Vietnam (landslide studies), Iran (flood studies), and Italy (gully erosion studies). The newly proposed PMT is demonstrated to be capable of analyzing a wide range of environmental modelling results, and provides inclusive performance evaluation metrics in a relatively short time and user-convenient framework whilst each of the metrics is used to address a particular aspect of the predictive model. Drawing on the inferences, a scenario-based protocol for model performance evaluation is suggested.

14.
J Environ Manage ; 232: 22-36, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30466009

RESUMO

Assessment of watershed health and prioritization of sub-watersheds are needed to allocate natural resources and efficiently manage watersheds. Characterization of health and spatial prioritization of sub-watersheds in data scarce regions helps better comprehend real watershed conditions and design and implement management strategies. Previous studies on the assessment of health and prioritization of sub-watersheds in ungauged regions have not considered environmental factors and their inter-relationship. In this regard, fuzzy logic theory can be employed to improve the assessment of watershed health. The present study considered a combination of climate vulnerability (Climate Water Balance), relative erosion rate of surficial rocks, slope weighted K-factor, topographic indices, thirteen morphometric characteristics (linear, areal, and relief aspects), and potential non-point source pollution to assess watershed health, using a new framework which considers the complex linkage between human activities and natural resources. The new framework, focusing on watershed health score (WHS), was employed for the spatial prioritization of 31 sub-watersheds in the Khoy watershed, West Azerbaijan Province, Iran. In this framework, an analytical network process (ANP) and fuzzy theory were used to investigate the inter-relationships between the above mentioned geo-environmental factors and to classify and rank the health of each sub-watershed in four classes. Results demonstrated that only one sub-watershed (C15) fell into the class that was defined as 'a potentially critical zone'. This article provides a new framework and practical recommendations for watershed management agencies with a high level of assurance when there is a lack of reliable hydrometric gauge data.


Assuntos
Monitoramento Ambiental , Poluição Difusa , Conservação dos Recursos Naturais , Hidrologia , Irã (Geográfico)
15.
Sci Total Environ ; 646: 1554-1566, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30235640

RESUMO

It is of fundamental importance to model the relationship between geo-environmental factors and piping erosion because of the environmental degradation attributed to soil loss. Methods that identify areas prone to piping erosion at the regional scale are limited. The main objective of this research is to develop a novel modeling approach by using three machine learning algorithms-mixture discriminant analysis (MDA), flexible discriminant analysis (FDA), and support vector machine (SVM) in addition to an unmanned aerial vehicle (UAV) images to map susceptibility to piping erosion in the loess-covered hilly region of Golestan Province, Northeast Iran. In this research, we have used 22 geo-environmental indices/factors and 345 identified pipes as predictors and dependent variables. The piping susceptibility maps were assessed by the area under the ROC curve (AUC). Validation of the results showed that the AUC for the three mentioned algorithms varied from 90.32% to 92.45%. We concluded that the proposed approach could efficiently produce a piping susceptibility map.

16.
Sci Total Environ ; 655: 684-696, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30476849

RESUMO

Gully erosion susceptibility mapping is a fundamental tool for land-use planning aimed at mitigating land degradation. However, the capabilities of some state-of-the-art data-mining models for developing accurate maps of gully erosion susceptibility have not yet been fully investigated. This study assessed and compared the performance of two different types of data-mining models for accurately mapping gully erosion susceptibility at a regional scale in Chavar, Ilam, Iran. The two methods evaluated were: Certainty Factor (CF), a bivariate statistical model; and Maximum Entropy (ME), an advanced machine learning model. Several geographic and environmental factors that can contribute to gully erosion were considered as predictor variables of gully erosion susceptibility. Based on an existing differential GPS survey inventory of gully erosion, a total of 63 eroded gullies were spatially randomly split in a 70:30 ratio for use in model calibration and validation, respectively. Accuracy assessments completed with the receiver operating characteristic curve method showed that the ME-based regional gully susceptibility map has an area under the curve (AUC) value of 88.6% whereas the CF-based map has an AUC of 81.8%. According to jackknife tests that were used to investigate the relative importance of predictor variables, aspect, distance to river, lithology and land use are the most influential factors for the spatial distribution of gully erosion susceptibility in this region of Iran. The gully erosion susceptibility maps produced in this study could be useful tools for land managers and engineers tasked with road development, urbanization and other future development.

17.
Sci Total Environ ; 644: 954-962, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743892

RESUMO

This study aimed to develop a novel framework for risk assessment of nitrate groundwater contamination by integrating chemical and statistical analysis for an arid region. A standard method was applied for assessing the vulnerability of groundwater to nitrate pollution in Lenjanat plain, Iran. Nitrate concentration were collected from 102 wells of the plain and used to provide pollution occurrence and probability maps. Three machine learning models including boosted regression trees (BRT), multivariate discriminant analysis (MDA), and support vector machine (SVM) were used for the probability of groundwater pollution occurrence. Afterwards, an ensemble modeling approach was applied for production of the groundwater pollution occurrence probability map. Validation of the models was carried out using area under the receiver operating characteristic curve method (AUC); values above 80% were selected to contribute in ensembling process. Results indicated that accuracy for the three models ranged from 0.81 to 0.87, therefore all models were considered for ensemble modeling process. The resultant groundwater pollution risk (produced by vulnerability, pollution, and probability maps) indicated that the central regions of the plain have high and very high risk of nitrate pollution further confirmed by the exiting landuse map. The findings may provide very helpful information in decision making for groundwater pollution risk management especially in semi-arid regions.

18.
Sci Total Environ ; 615: 272-281, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28982076

RESUMO

Suspended sediment load (SSL) modelling is an important issue in integrated environmental and water resources management, as sediment affects water quality and aquatic habitats. Although classification and regression tree (CART) algorithms have been applied successfully to ecological and geomorphological modelling, their applicability to SSL estimation in rivers has not yet been investigated. In this study, we evaluated use of a CART model to estimate SSL based on hydro-meteorological data. We also compared the accuracy of the CART model with that of the four most commonly used models for time series modelling of SSL, i.e. adaptive neuro-fuzzy inference system (ANFIS), multi-layer perceptron (MLP) neural network and two kernels of support vector machines (RBF-SVM and P-SVM). The models were calibrated using river discharge, stage, rainfall and monthly SSL data for the Kareh-Sang River gauging station in the Haraz watershed in northern Iran, where sediment transport is a considerable issue. In addition, different combinations of input data with various time lags were explored to estimate SSL. The best input combination was identified through trial and error, percent bias (PBIAS), Taylor diagrams and violin plots for each model. For evaluating the capability of the models, different statistics such as Nash-Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE) and percent bias (PBIAS) were used. The results showed that the CART model performed best in predicting SSL (NSE=0.77, KGE=0.8, PBIAS<±15), followed by RBF-SVM (NSE=0.68, KGE=0.72, PBIAS<±15). Thus the CART model can be a helpful tool in basins where hydro-meteorological data are readily available.

19.
Sci Total Environ ; 579: 913-927, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27887837

RESUMO

Despite the importance of soil erosion in sustainable development goals in arid and semi-arid areas, the study of the geo-environmental conditions and factors influencing gully erosion occurrence is rarely undertaken. As effort to this challenge, the main objective of this study is to apply an integrated approach of Geographic Object-Based Image Analysis (GEOBIA) together with high-spatial resolution imagery (SPOT-5) for detecting gully erosion features at the Kashkan-Poldokhtar watershed, Iran. We also aimed to apply a Conditional Probability (CP) model for establishing the spatial relationship between gullies and the Geo-Environmental Factors (GEFs). The gully erosion inventory map prepared using GEOBIA and field surveying was randomly partitioned into two subsets: (1) part 1 that contains 70% was used in the training phase of the CP model; (2) part 2 is a validation dataset (30%) for validation of the model and to confirm its accuracy. Prediction performances of the GEOBIA and CP model were checked by overall accuracy and Receiver Operating Characteristics (ROC) curve methods, respectively. In addition, the influence of all GEFs on gully erosion was evaluated by performing a sensitivity analysis model. The validation findings illustrated that overall accuracy for GEOBIA approach and the area under the ROC curve for the CP model were 92.4% and 89.9%, respectively. Also, based on sensitivity analysis, soil texture, drainage density, and lithology represent significantly effects on the gully erosion occurrence. This study has shown that the integrated framework can be successfully used for modeling gully erosion occurrence in a data-poor environment.

20.
Sci Total Environ ; 568: 1110-1123, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27358196

RESUMO

Effective management and sustainable development of groundwater resources of arid and semi-arid environments require monitoring of groundwater quality and quantity. The aim of this paper is to develop a reasonable methodological framework for producing the suitability map for drinking water through the geographic information system, remote sensing and field surveys of the Andimeshk-Dezful, Khozestan province, Iran as a semi-arid region. This study investigated the delineation of groundwater potential zone based on Dempster-Shafer (DS) theory of evidence and evaluate its applicability for groundwater potentiality mapping. The study also analyzed the spatial distribution of groundwater nitrate concentration; and produced the suitability map for drinking water. The study has been carried out with the following steps: i) creation of maps of groundwater conditioning factors; ii) assessment of groundwater occurrence characteristics; iii) creation of groundwater potentiality map (GPM) and model validation; iv) collection and chemical analysis of water samples; v) assessment of groundwater nitrate pollution; and vi) creation of groundwater potentiality and quality map. The performance of the DS was also evaluated using the receiver operating characteristic (ROC) curve method and pumping test data to ensure its generalization ability, which eventually, the GPM showed 87.76% accuracy. The detailed analysis of groundwater potentiality and quality revealed that the 'non acceptable' areas covers an area of about 1479km(2) (60%). The study will provide significant information for groundwater management and exploitation in areas where groundwater is a major source of water and its exploration is critical to support drinking water need.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...