Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(22)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38856066

RESUMO

In the liquid phase of heterogeneous catalysis, solvent plays an important role and governs the kinetics and thermodynamics of a reaction. Although it is often difficult to quantify the role of the solvent, it becomes particularly challenging when a zeolite is used as the catalyst. This difficulty arises from the complex nature of the liquid/zeolite interface and the different solvation environments around catalytically active sites. Here, we use ab initio molecular dynamics simulations to probe the local solvation structure and dynamics of methanol and water over MWW zeolite nanosheets with varying Brønsted acidity. We find that the zeolite framework and the number and location of the acid sites in the zeolite influence the structure and dynamics of the solvent. In particular, methanol is more likely to be in the vicinity of the aluminum (Al3+) at the T4 site than at T1 due to easy accessibility. The methanol oxygen binds strongly to the Al at the T4 site, weakening the Al-O for the bridging acid site, which results in the formation of the silanol group, significantly reducing the acidity of the site. The behavior of methanol is in direct contrast to that of water, where protons can easily propagate from the zeolite to the solvent molecules regardless of the acid site location. Our work provides molecular-level insights into how solvent interacts with zeolite surfaces, leading to an improved understanding of the catalytic site in the MWW zeolite nanosheet.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38713090

RESUMO

Oxidative phosphorylation is regulated by mitochondrial calcium (Ca2+) in health and disease. In physiological states, Ca2+ enters via the mitochondrial Ca2+ uniporter and rapidly enhances NADH and ATP production. However, maintaining Ca2+ homeostasis is critical: insufficient Ca2+ impairs stress adaptation, while Ca2+ overload can trigger cell death. In this review, we delve into recent insights further defining the relationship between mitochondrial Ca2+ dynamics and oxidative phosphorylation. Our focus is on how such regulation affects cardiac function in health and disease, including heart failure, ischemia-reperfusion, arrhythmias, catecholaminergic polymorphic ventricular tachycardia, mitochondrial cardiomyopathies, Barth syndrome, and Friedreich's ataxia. Several themes emerge from recent data. First, mitochondrial Ca2+ regulation is critical for fuel substrate selection, metabolite import, and matching of ATP supply to demand. Second, mitochondrial Ca2+ regulates both the production and response to reactive oxygen species (ROS), and the balance between its pro- and antioxidant effects is key to how it contributes to physiological and pathological states. Third, Ca2+ exerts localized effects on the electron transport chain (ETC), not through traditional allosteric mechanisms, but rather indirectly. These effects hinge on specific transporters, such as the uniporter or the Na+-Ca2+ exchanger and may not be noticeable acutely, contributing differently to phenotypes depending on whether Ca2+ transporters are acutely or chronically modified. Perturbations in these novel relationships during disease states may either serve as compensatory mechanisms or exacerbate impairments in oxidative phosphorylation. Consequently, targeting mitochondrial Ca2+ holds promise as a therapeutic strategy for a variety of cardiac diseases characterized by contractile failure or arrhythmias.

3.
BMC Cancer ; 24(1): 323, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459456

RESUMO

BACKGROUND: Increased mitochondrial activities contributing to cancer cell proliferation, invasion, and metastasis have been reported in different cancers; however, studies on the therapeutic targeting of mitochondria in regulating cell proliferation and invasiveness are limited. Because mitochondria are believed to have evolved through bacterial invasion in mammalian cells, antibiotics could provide an alternative approach to target mitochondria, especially in cancers with increased mitochondrial activities. In this study, we investigated the therapeutic potential of bacteriostatic antibiotics in regulating the growth potential of colorectal cancer (CRC) cells, which differ in their metastatic potential and mitochondrial functions. METHODS: A combination of viability, cell migration, and spheroid formation assays was used to measure the effect on metastatic potential. The effect on mitochondrial mechanisms was investigated by measuring mitochondrial DNA copy number by qPCR, biogenesis (by qPCR and immunoblotting), and functions by measuring reactive oxygen species, membrane potential, and ATP using standard methods. In addition, the effect on assembly and activities of respiratory chain (RC) complexes was determined using blue native gel electrophoresis and in-gel assays, respectively). Changes in metastatic and cell death signaling were measured by immunoblotting with specific marker proteins and compared between CRC cells. RESULTS: Both tigecycline and tetracycline effectively reduced the viability, migration, and spheroid-forming capacity of highly metastatic CRC cells. This increased sensitivity was attributed to reduced mtDNA content, mitochondrial biogenesis, ATP content, membrane potential, and increased oxidative stress. Specifically, complex I assembly and activity were significantly inhibited by these antibiotics in high-metastatic cells. Significant down-regulation in the expression of mitochondrial-mediated survival pathways, such as phospho-AKT, cMYC, phospho-SRC, and phospho-FAK, and upregulation in cell death (apoptosis and autophagy) were observed, which contributed to the enhanced sensitivity of highly metastatic CRC cells toward these antibiotics. In addition, the combined treatment of the CRC chemotherapeutic agent oxaliplatin with tigecycline/tetracycline at physiological concentrations effectively sensitized these cells at early time points. CONCLUSION: Altogether, our study reports that bacterial antibiotics, such as tigecycline and tetracycline, target mitochondrial functions specifically mitochondrial complex I architecture and activity and would be useful in combination with cancer chemotherapeutics for high metastatic conditions.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Animais , Humanos , Tigeciclina/metabolismo , Tigeciclina/farmacologia , Reposicionamento de Medicamentos , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Antibacterianos/farmacologia , Neoplasias do Colo/metabolismo , Proliferação de Células , Apoptose , Trifosfato de Adenosina/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Mamíferos/metabolismo
4.
Nat Nanotechnol ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448520

RESUMO

Free radicals, generally formed through the cleavage of covalent electron-pair bonds, play an important role in diverse fields ranging from synthetic chemistry to spintronics and nonlinear optics. However, the characterization and regulation of the radical state at a single-molecule level face formidable challenges. Here we present the detection and sophisticated tuning of the open-shell character of individual diradicals with a donor-acceptor structure via a sensitive single-molecule electrical approach. The radical is sandwiched between nanogapped graphene electrodes via covalent amide bonds to construct stable graphene-molecule-graphene single-molecule junctions. We measure the electrical conductance as a function of temperature and track the evolution of the closed-shell and open-shell electronic structures in real time, the open-shell triplet state being stabilized with increasing temperature. Furthermore, we tune the spin states by external stimuli, such as electrical and magnetic fields, and extract thermodynamic and kinetic parameters of the transition between closed-shell and open-shell states. Our findings provide insights into the evolution of single-molecule radicals under external stimuli, which may proof instrumental for the development of functional quantum spin-based molecular devices.

5.
Soft Matter ; 20(8): 1824-1833, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38305724

RESUMO

High-spin donor-acceptor conjugated polymers are extensively studied for their potential applications in magnetic and spintronic devices. Inter-chain charge transfer among these high-spin polymers mainly depends on the nature of the local structure of the thin film and π-stacking between the polymer chains. However, the microscopic structural details of high-spin polymeric materials are rarely studied with an atomistic force field, and the molecular-level local structure in the liquid phase remains ambiguous. Here, we have examined the effects of oligomer chain length, side chain, and processing temperature on the organization of the high-spin cyclopentadithiophene-benzobisthiadiazole donor-acceptor conjugated polymer in chloroform solvent. We find that the oligomers display ordered aggregates whose structure depends on their chain length, with an average π-stacking distance of 3.38 ± 0.03 Å (at T = 298 K) in good agreement with the experiment. Also, the oligomers with longer alkyl side chains show better solvation and a shorter π-stacking distance. Furthermore, the clusters grow faster at higher temperature with more ordered aggregation between the oligomer chains.

6.
Sci Rep ; 13(1): 21587, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062104

RESUMO

Organic semiconductors based on conjugated donor-acceptor (D-A) polymers are a unique platform for electronic, spintronic, and energy-harvesting devices. Understanding the electronic structure of D-A polymers with a small band gap is essential for developing next-generation technologies. Here, we investigate the electronic structure and optical spectra of cyclopentadithiophene-based closed/open-shell D-A polymers using density functional theory and the Bethe-Salpeter equation based on G[Formula: see text]W[Formula: see text] approximation. We explored the role of different acceptor units and chemical substitutions on the structural changes and, more importantly, electronic, optical, and dielectric behavior. We found that the computed first exciton peak of the polymers agreed well with the available experimentally measured optical gap. Furthermore, D-A polymers with open-shell character display higher dielectric constant than the closed-shell polymers. We show that the exceptional performance of polycyclopentadithiophene-thiophenylthiadiazoloquinoxaline (PCPDT-TTQ) as a scalable n-type material for Faradaic supercapacitors can be partly ascribed to its elevated dielectric constant. Consequently, these D-A polymers, characterized by their high dielectric constants, exhibit significant potential for various applications, including energy storage, organic electronics, and the production of dielectric films.

7.
J Phys Chem B ; 127(30): 6767-6777, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37475644

RESUMO

Lignin is the essential building block of lignocellulosic biomass, an excellent renewable source of different aromatic monomers for the polymer and biofuel industry. The depolymerization of lignin into value-added chemicals and fuels through the catalytic process poses a significant challenge due to the complex structure of lignin. Understanding lignin's conformational diversity and dynamics in the liquid phase is crucial to designing an effective depolymerization process. Here, we conducted all-atom molecular dynamics simulations to understand the conformation and dynamics of softwood lignin on the all-silica zeolite nanosheet based on the MFI topology in a binary mixture of water-methanol at three different molar compositions (0%, 50%, and 100% methanol). We observed that the methanol-surface interaction is stronger than the water-surface interaction, and methanol readily diffused into the MFI core. Lignin surface contacts decrease with increasing methanol composition due to higher solubility and dynamics. Lignin dynamics on the surface in neat water is an order of magnitude smaller than methanol. We also found that lignin adopts a slightly extended conformation when it stays on the surface than in the bulk solution phase for the pure water case, whereas for pure methanol and the binary solution structures are statistically similar.

9.
Phys Chem Chem Phys ; 24(38): 23699-23711, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36148814

RESUMO

High-spin ground-state organic materials with unique spin topology can significantly impact molecular magnetism, spintronics, and quantum computing devices. However, strategies to control the spin topology and alignment of the unpaired spins in different molecular orbitals are not well understood. Here, we report modulating spin distribution along the molecular backbone in high-spin ground-state donor-acceptor (D-A) conjugated polymers. Density functional theory calculations indicate that substitution of different heteroatoms (such as C, Si, N, and Se) alters the aromatic character in the thiadiazole unit of the benzobisthiadiazole (BBT) acceptor and modulates the oligomer length to result in high-spin triplet ground-state, orbital and spin topology. The C, Si, and Se atom substituted polymers show a localized spin density at the two opposite ends of the polymers. However, a delocalized spin distribution is observed in the N substituted polymer. We find that the hybridization (sp3vs. sp2) of the substituent atom plays an important role in controlling the electronic structure of these materials. This study shows that atomistic engineering is an efficient technique to tune the spin topologies and electronic configurations in the high-spin ground-state donor-acceptor conjugated polymers, compelling synthetic targets for room-temperature magnetic materials.

10.
J Phys Chem B ; 126(31): 5752-5764, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35915516

RESUMO

Due to its significant aromatic content, lignin is an attractive source of valuable organic chemicals. As most of the proposed lignin depolymerization processes are expected to be liquid-phase, it is necessary to understand the effect of solvent quality on the structure and dynamics of lignin. Here we use all-atom molecular dynamics simulations to understand the evolution of lignin structure as a function of methanol concentration in methanol/water solution at different temperatures. We utilize two different lignin models: softwood consisting of guaiacyl (G) monomer and hardwood consisting of heteropolymer containing guaiacyl/syringyl (S) with a 1.35:1 ratio. The presence of additional methoxy groups in the hardwood lignin leads to a more extended configuration than softwood lignin with increasing methanol concentration. Structural features (radius of gyration and solvent accessible surface area) of lignin correlate with the strength of intermolecular forces quantified using cohesive energy density. We find that methanol preferentially solvates the nonpolar segments of the lignin polymer while water molecules solvate the polar functional groups. Thus, as the methanol concentration increases, methanol can better solvate lignin polymer, leading to a more extended configuration suitable for catalytic transformation to value-added chemicals.


Assuntos
Lignina , Metanol , Catálise , Lignina/química , Solventes/química , Água/química
11.
J Phys Chem B ; 126(6): 1352-1364, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35119855

RESUMO

Liquid-phase heterogeneous catalysis using zeolites is important for biomass conversion to fuels and chemicals. There is a substantial body of work on gas-phase sorption in zeolites with different topologies; however, studies investigating the diffusion of complex molecules in liquid medium into zeolitic nanopores are scarce. Here, we present a molecular dynamics study to understand the sorption and diffusion of aqueous ß-d-glucose into ß-zeolite silicate at T = 395 K and P = 1 bar. Through 2-µs-long molecular dynamics trajectories, we reveal the role of the solvent, the kinetics of the pore filling, and the effect of the water model on these properties. We find that the glucose and water loading is a function of the initial glucose concentration. Although the glucose concentration increases monotonically with the initial glucose concentration, the water loading exhibits a nonmonotonic behavior. At the highest initial concentration (∼20 wt %), we find that the equilibrium loading of glucose is approximately five molecules per unit cell and displays a weak dependence on the water model. Glucose molecules follow a single-file diffusion in the nanopores due to confinement. The dynamics of glucose and water molecules slows significantly at the interface. The average residence time for glucose molecules is an order of magnitude larger than that in the bulk solution, while it is about twice as large for the water molecules. Our simulations reveal critical molecular details of the glucose molecule's local environment inside the zeolite pore relevant to catalytic conversion of biomass to valuable chemicals.


Assuntos
Nanoporos , Zeolitas , Catálise , Glucose/química , Água/química , Zeolitas/química
12.
Curr Drug Targets ; 23(6): 606-627, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34431462

RESUMO

Metabolic reprogramming is considered a major event in cancer initiation, progression and metastasis. The metabolic signature of cancer cells includes alterations in glycolysis, mitochondrial respiration, fatty acid/lipid and amino acid metabolism. Being at a junction of various metabolic pathways, mitochondria play a key role in fueling cancer growth through regulating bioenergetics, metabolism and cell death. Increasing evidence suggests that alteration in lipid metabolism is a common feature of metastatic progression, including fatty acid synthesis as well as fatty acid oxidation. However, the interplay between lipid metabolism and mitochondria in carcinogenesis remains obscure. The present review focuses on key lipid metabolic pathways associated with mitochondrial regulation that drive cancer phenotype and metastasis. We also review potential targets of lipid metabolism and mitochondria to improve the therapeutic regime in cancer patients. This review aims to improve our current understanding of the intricate relation of lipids with mitochondria and provides insights into new therapeutic approaches.


Assuntos
Metabolismo dos Lipídeos , Neoplasias , Metabolismo Energético , Ácidos Graxos/metabolismo , Ácidos Graxos/uso terapêutico , Humanos , Mitocôndrias/patologia , Neoplasias/tratamento farmacológico
13.
Nat Commun ; 12(1): 5889, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620849

RESUMO

Most organic semiconductors have closed-shell electronic structures, however, studies have revealed open-shell character emanating from design paradigms such as narrowing the bandgap and controlling the quinoidal-aromatic resonance of the π-system. A fundamental challenge is understanding and identifying the molecular and electronic basis for the transition from a closed- to open-shell electronic structure and connecting the physicochemical properties with (opto)electronic functionality. Here, we report donor-acceptor organic semiconductors comprised of diketopyrrolopyrrole and naphthobisthiadiazole acceptors and various electron-rich donors commonly utilized in constructing high-performance organic semiconductors. Nuclear magnetic resonance, electron spin resonance, magnetic susceptibility measurements, single-crystal X-ray studies, and computational investigations connect the bandgap, π-extension, structural, and electronic features with the emergence of various degrees of diradical character. This work systematically demonstrates the widespread diradical character in the classical donor-acceptor organic semiconductors and provides distinctive insights into their ground state structure-property relationship.

14.
Biochem Biophys Rep ; 26: 100931, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33644420

RESUMO

Changes in mitochondrial DNA (mt-DNA) copy number in blood/tissue have been linked to increased risk of several cancers; however, studies on their association in breast cancer is still lacking. In this pilot study, we investigated mt-DNA copy number variation in peripheral blood and tissue samples from metastatic breast cancer patients and compared their differences. For the study, peripheral blood samples from non-cancer individuals (control) and breast cancer patients, along with resected tissues from adjacent and tumor sites from same breast cancer patients were collected. Total genomic DNA was isolated and changes in mt-DNA copy number were measured by relative quantification using SYBR green based quantitative real time PCR method. Our results indicated a significant reduction in mt-DNA copy number in blood samples of breast cancer patients compared to control. However, a significantly higher mt-DNA copy number was observed in tumor tissue when compared with paired non tumor tissue. There was no significant difference in mt-DNA copy number between blood and adjacent tumor tissue samples of the breast cancer patients. Overall, our study reports for the first time a comparison of mt-DNA copy number in blood and paired tissue together and suggested that mt-DNA copy number is differentially regulated in blood and tumor tissues in breast cancer.

15.
Environ Sci Pollut Res Int ; 28(11): 13761-13775, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33196993

RESUMO

Agriculture has the most significant contribution in fulfilling the basic human need, sustaining life, and strengthening the economy of any country. To feed the exploding population of the world, there has been a quantum jump in the production of agricultural commodities, which has led to the production of a substantial considerable quantity of agricultural and agro-industrial wastes. The bulks of these wastes are lignocellulosic in nature and consist of three main polymeric constituents, i.e., cellulose, hemicellulose, and lignin, which are recalcitrant. The primary significant portions of these remain unutilized and are burnt in the field, leading to severe environmental aggression and wastage of resource. Farmers across the globe, including India, burn these agricultural wastes in their thousands of acre land, which contribute to spoiling the air quality index (AQI). This is very harmful, especially to children, pregnant women, old adults, and for patients suffering from respiratory diseases. The current manuscript sets up an agro-waste management platform by using paddy straw as a substrate for the production of nutritionally and medically rich oyster mushroom, Pleurotus florida (Pf) and which is further used in the green synthesis of bimetallic (gold-platinum) Au-Pt nanoparticle. Yield performance and biological efficiency of Pf were calculated from the degraded paddy straw. The green synthesized Au-Pt NPs were structurally characterized by ultraviolet-visible (UV-Vis), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and zeta potential analysis. The prepared NPs showed a face-centered cubic crystal structure, icosahedral shape with a mean particle size of 16 nm. Furthermore, we examined the cytotoxic activity of Au-Pt NPs using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, intracellular reactive oxygen species (ROS) generation, and apoptosis by propidium iodide assay. We found that Au-Pt NPs exerted apoptotic activity on the human colon cancer cell line (HCT 116) in a dose-dependent manner from 12.5 to 200 µg/mL. Overall, our findings create a prototype and open a new door to synthesizing functional nanoparticle by using oyster mushroom as the substrate for paddy straw agro-waste management and the applicability of Pf in the synthesis of eco-friendly Au-Pt NPs. This is the first kind of approach that kills two birds with one stone.


Assuntos
Nanopartículas Metálicas , Pleurotus , Gerenciamento de Resíduos , Criança , Feminino , Ouro , Humanos , Índia , Gravidez
16.
iScience ; 23(11): 101675, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33145485

RESUMO

Polyradical character and global aromaticity are fundamental concepts that govern the rational design of cyclic conjugated macromolecules for optoelectronic applications. Here, we report donor-acceptor (D-A) conjugated macromolecules with and without π-spacer derivatives to tune the antiferromagnetic couplings between the unpaired electrons. The macromolecules without π-spacer have a closed-shell electronic configuration and show global nonaromatic character in the singlet and lowest triplet states. However, the derivatives with π-spacer develop a nearly pure open-shell diradical and a very high polyradical character, not reported for D-A type macromolecules. Furthermore, the π-spacer derivatives display global nonaromaticity in the singlet ground state, but global aromaticity in the lowest triplet state, according to Baird's rule. The absorption spectra of the open-shell macromolecules calculated with time-dependent density functional theory indicate intensive light absorption in the near-infrared region and broadening to 2,500 nm, making these materials suitable for numerous optoelectronic applications.

17.
Oncol Lett ; 20(6): 313, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33093922

RESUMO

Mitochondria serve a vital role in cellular homeostasis as they regulate cell proliferation and death pathways, which are attributed to mitochondrial bioenergetics, free radicals and metabolism. Alterations in mitochondrial functions have been reported in various diseases, including cancer. Colorectal cancer (CRC) is one of the most common metastatic cancer types with high mortality rates. Although mitochondrial oxidative stress has been associated with CRC, its specific mechanism and contribution to metastatic progression remain poorly understood. Therefore, the aims of the present study were to investigate the role of mitochondria in CRC cells with low and high metastatic potential and to evaluate the contribution of mitochondrial respiratory chain (RC) complexes in oncogenic signaling pathways. The present results demonstrated that cell lines with low metastatic potential were resistant to mitochondrial complex I (C-I)-mediated oxidative stress, and had C-I inhibition with impaired mitochondrial functions. These adaptations enabled cells to cope with higher oxidative stress. Conversely, cells with high metastatic potential demonstrated functional C-I with improved mitochondrial function due to coordinated upregulation of mitochondrial biogenesis and metabolic reprogramming. Pharmacological inhibition of C-I in high metastatic cells resulted in increased sensitivity to cell death and decreased metastatic signaling. The present findings identified the differential regulation of mitochondrial functions in CRC cells, based on CRC metastatic potential. Specifically, it was suggested that a functional C-I is required for high metastatic features of cancer cells, and the role of C-I could be further examined as a potential target in the development of novel therapies for diagnosing high metastatic cancer types.

18.
Molecules ; 25(13)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645899

RESUMO

Herbal medicines are widely used worldwide and much appreciated because of their fewer side effects and the ability to fight diseases at the root cause. Active 'phyto' ingredients require a scientific approach and a mechanism to distribute components at the target site for better therapeutic results. Nanotechnology, on the other hand, has created new hope for cancer treatment but is still far from being proven in clinical settings. This article combines a unique approach to synthesis with the use of Pleurotus sajor-caju, followed by microwave irritation of silver and gold nanoparticles that ensures the capping of the active phyto ingredient and further enhances the effects of nanomedicine to fight colon cancer, thus opening a new era of what we call herbonanoceutics. The article also compares the characteristics and properties of silver (Au) and gold (Ag) nanoparticles synthesized by an in house developed novel microwave-assisted rapid green synthesis method. The as-prepared Ag NPs and Au NPs were compared using ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS). Our comparative study revealed that both assemblies display face-centred cubic structures (FCCs) and are nanocrystalline in nature. The advantage of the approach was that the sizes of gold and silver were identical in range with a similar distribution pattern. This has helped us to study the activity against colon cancer cell line (HCT-116) without incoherence since size plays a key role in the application. More specifically, morphological changes, cell viability, the production of reactive oxygen species (ROS) and the fragmentation of DNA have been further reported to assess better the results obtained with the two metals. Our results suggest that the newly adopted synthesis method may ensure the dual benefits from phyto ingredients which further enhances the effectiveness of advanced nanomedicine.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Ouro , Lentinula/química , Nanopartículas Metálicas , Prata , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Ouro/química , Ouro/farmacologia , Células HCT116 , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Micro-Ondas , Prata/química , Prata/farmacologia
19.
J Phys Chem B ; 124(11): 2277-2288, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32105082

RESUMO

Molecular gels are formed by the supramolecular assembly of low molecular weight gelators (LMWGs) in organic solvents or water. Despite significant advances in the field, our understanding of how gelator molecules lead to complex self-assembled fibrillar network (SAFIN) is rather poor. Here, we present molecular dynamics simulations to gain insights into the early-stage aggregation of self-assembled fibrillar network (SAFIN) of 12-hydroxyoctadecanamide (12-HSAm) in octane. Our simulations reveal that the hydroxyl group located at the 12th carbon position plays an important role in the fiber formation. If the hydroxyl group is removed from the backbone, then we find that the aggregates adopt a bilayer morphology rather than cylindrical fibers. Analysis of fibers reveals different morphologies such as cylindrical, tape, and junction zones. A typical cylindrical fiber diameter is 2.4-3.4 nm, while the tape-like fibers are 4.4-8.6 nm in width and 2.4-4.2 nm in depth. In the fibers, we observe that the majority of the gelator molecules interact with neighboring molecules with only one interaction site, leading to growth of the fiber in one dimension. Our simulations help explain the role of functional groups in the self-assembly of small molecules leading to gel formation.

20.
Sensors (Basel) ; 20(2)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936425

RESUMO

Soil volumetric water content ( V W C ) is a vital parameter to understand several ecohydrological and environmental processes. Its cost-effective measurement can potentially drive various technological tools to promote data-driven sustainable agriculture through supplemental irrigation solutions, the lack of which has contributed to severe agricultural distress, particularly for smallholder farmers. The cost of commercially available V W C sensors varies over four orders of magnitude. A laboratory study characterizing and testing sensors from this wide range of cost categories, which is a prerequisite to explore their applicability for irrigation management, has not been conducted. Within this context, two low-cost capacitive sensors-SMEC300 and SM100-manufactured by Spectrum Technologies Inc. (Aurora, IL, USA), and two very low-cost resistive sensors-the Soil Hygrometer Detection Module Soil Moisture Sensor (YL100) by Electronicfans and the Generic Soil Moisture Sensor Module (YL69) by KitsGuru-were tested for performance in laboratory conditions. Each sensor was calibrated in different repacked soils, and tested to evaluate accuracy, precision and sensitivity to variations in temperature and salinity. The capacitive sensors were additionally tested for their performance in liquids of known dielectric constants, and a comparative analysis of the calibration equations developed in-house and provided by the manufacturer was carried out. The value for money of the sensors is reflected in their precision performance, i.e., the precision performance largely follows sensor costs. The other aspects of sensor performance do not necessarily follow sensor costs. The low-cost capacitive sensors were more accurate than manufacturer specifications, and could match the performance of the secondary standard sensor, after soil specific calibration. SMEC300 is accurate ( M A E , R M S E , and R A E of 2.12%, 2.88% and 0.28 respectively), precise, and performed well considering its price as well as multi-purpose sensing capabilities. The less-expensive SM100 sensor had a better accuracy ( M A E , R M S E , and R A E of 1.67%, 2.36% and 0.21 respectively) but poorer precision than the SMEC300. However, it was established as a robust, field ready, low-cost sensor due to its more consistent performance in soils (particularly the field soil) and superior performance in fluids. Both the capacitive sensors responded reasonably to variations in temperature and salinity conditions. Though the resistive sensors were less accurate and precise compared to the capacitive sensors, they performed well considering their cost category. The YL100 was more accurate ( M A E , R M S E , and R A E of 3.51%, 5.21% and 0.37 respectively) than YL69 ( M A E , R M S E , and R A E of 4.13%, 5.54%, and 0.41, respectively). However, YL69 outperformed YL100 in terms of precision, and response to temperature and salinity variations, to emerge as a more robust resistive sensor. These very low-cost sensors may be used in combination with more accurate sensors to better characterize the spatiotemporal variability of field scale soil moisture. The laboratory characterization conducted in this study is a prerequisite to estimate the effect of low- and very low-cost sensor measurements on the efficiency of soil moisture based irrigation scheduling systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...