Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1428, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365898

RESUMO

Lead-free, silicon compatible materials showing large electromechanical responses comparable to, or better than conventional relaxor ferroelectrics, are desirable for various nanoelectromechanical devices and applications. Defect-engineered electrostriction has recently been gaining popularity to obtain enhanced electromechanical responses at sub 100 Hz frequencies. Here, we report record values of electrostrictive strain coefficients (M31) at frequencies as large as 5 kHz (1.04×10-14 m2/V2 at 1 kHz, and 3.87×10-15 m2/V2 at 5 kHz) using A-site and oxygen-deficient barium titanate thin-films, epitaxially integrated onto Si. The effect is robust and retained upon cycling upto 6 million times. Our perovskite films are non-ferroelectric, exhibit a different symmetry compared to stoichiometric BaTiO3 and are characterized by twin boundaries and nano polar-like regions. We show that the dielectric relaxation arising from the defect-induced features correlates well with the observed giant electrostriction-like response. These films show large coefficient of thermal expansion (2.36 × 10-5/K), which along with the giant M31 implies a considerable increase in the lattice anharmonicity induced by the defects. Our work provides a crucial step forward towards formulating guidelines to engineer large electromechanical responses even at higher frequencies in lead-free thin films.

2.
Nat Commun ; 14(1): 6210, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798279

RESUMO

Correlated electron materials (CEMs) host a rich variety of condensed matter phases. Vanadium dioxide (VO2) is a prototypical CEM with a temperature-dependent metal-to-insulator (MIT) transition with a concomitant crystal symmetry change. External control of MIT in VO2-especially without inducing structural changes-has been a long-standing challenge. In this work, we design and synthesize modulation-doped VO2-based thin film heterostructures that closely emulate a textbook example of filling control in a correlated electron insulator. Using a combination of charge transport, hard X-ray photoelectron spectroscopy, and structural characterization, we show that the insulating state can be doped to achieve carrier densities greater than 5 × 1021 cm-3 without inducing any measurable structural changes. We find that the MIT temperature (TMIT) continuously decreases with increasing carrier concentration. Remarkably, the insulating state is robust even at doping concentrations as high as ~0.2 e-/vanadium. Finally, our work reveals modulation-doping as a viable method for electronic control of phase transitions in correlated electron oxides with the potential for use in future devices based on electric-field controlled phase transitions.

3.
Adv Sci (Weinh) ; 10(26): e2303781, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37409444

RESUMO

The manipulation of carbon nitride (CN) structures is one main avenue to enhance the activity of CN-based photocatalysts. Increasing the efficiency of photocatalytic heterogeneous materials is a critical step toward the realistic implementation of sustainable schemes for organic synthesis. However, limited knowledge of the structure/activity relationship in relation to subtle structural variations prevents a fully rational design of new photocatalytic materials, limiting practical applications. Here, the CN structure is engineered by means of a microwave treatment, and the structure of the material is shaped around its suitable functionality for Ni dual photocatalysis, with a resulting boosting of the reaction efficiency toward many CX (X = N, S, O) couplings. The combination of advanced characterization techniques and first-principle simulations reveals that this enhanced reactivity is due to the formation of carbon vacancies that evolve into triazole and imine N species able to suitably bind Ni complexes and harness highly efficient dual catalysis. The cost-effective microwave treatment proposed here appears as a versatile and sustainable approach to the design of CN-based photocatalysts for a wide range of industrially relevant organic synthetic reactions.

4.
Inorg Chem ; 62(31): 12345-12355, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37477874

RESUMO

Development of highly efficient, earth-abundant, and stable bifunctional electrocatalysts is pivotal for designing viable next-generation metal-air batteries. Cobalt-based phosphates provide a treasure house to design electrocatalysts, with a wide range of cation substitutions to further enhance their electrocatalytic activity. In particular, phosphates with distorted geometry show favorable binding efficiency toward water molecules with low overpotential. In the present work, zinc-substituted cobalt phosphate ZnCo2(PO4)2 was investigated. Its crystal structure was solved to a monoclinic framework built with CoO6 octahedra and distorted CoO5/ZnO5 trigonal bipyramid leading to efficient bifunctional electrocatalytic activity. It offers robust structural stability with onset potential values of 0.87 V (vs reversible hydrogen electrode (RHE)) and 1.50 V (vs RHE) for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes, respectively, comparable to the precious metal catalysts. The origin and stability of the bifunctional activity were probed by combining ex situ diffraction and electron microscopy corroborated by ab initio calculations. Overall, zinc-substituted cobalt phosphate [ZnCo2(PO4)2] forms a potential bifunctional electrocatalyst with tunable local cobalt coordination that can be harnessed for metal-air batteries.

5.
Nanoscale ; 11(3): 870-877, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30601560

RESUMO

Engineering the properties of layered metal dichalcogenides (LMDs) requires stringent control of their morphology. Herein, using a scalable one-step solvothermal technique, we report the synthesis of SnSe2 under two different conditions, leading to the formation of nanoflakes and nanoflowers. The use of oleic acid in the reaction leads to the formation of nanoflowers, and the presence of ethanol in the reaction medium leads to the formation of nanoflakes. Ab initio density functional theory calculations rationalise this observation, revealing a stronger adsorption of ethanol on the {0001} facet compared to the acid. Furthermore, these SnSe2 nanoflakes, when integrated with graphene, also respond to incident electromagnetic radiation, from the visible to near infrared regime, with a specific detectivity of ∼5 × 1010 Jones, which is comparable to that of the best available photodetectors, making them suitable for use in various technological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...