Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Epigenomics ; 16(6): 359-374, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38440863

RESUMO

Aim: To study the expression of histone methyltransferase SMYD1 in white adipose tissue (WAT) and brown adipose tissue and during differentiation of preadipocytes to white and beige phenotypes. Methods: C57BL/6J mice fed a high-fat diet (and exposed to cold) and 3T3-L1 cells stimulated to differentiate into white and beige adipocytes were used. Results: SMYD1 expression increased in WAT of high-fat diet fed mice and in WAT and brown adipose tissue of cold-exposed mice, suggesting its role in thermogenesis. SMYD1 expression was higher in beige adipocytes than in white adipocytes, and its silencing leads to a decrease in mitochondrial content and in Pgc-1α expression. Conclusion: These data suggest a novel role for SMYD1 as a positive regulator of energy control in adipose tissue.


In this study, a protein called SMYD1 was examined in the adipose tissue of mice to understand its role in the development of different types of fat cells. The authors used mice fed a high-fat diet or mice exposed to a cold environment. The experiments were also performed on cultured cells that were stimulated to form specific types of fat cells (white adipocytes, which store energy; or beige adipocytes, which are responsible for releasing energy in the form of heat). The study found that SMYD1 increased in white adipose tissue particularly in response to cold exposure and high-fat diet, suggesting involvement in body temperature regulation. SMYD1 was higher in beige adipocytes than in white fat cells, and when SMYD1 was reduced, there was a decrease in certain factors related to energy control. Overall, these results suggest that SMYD1 plays a novel role in energy regulation in adipose tissues.


Assuntos
Tecido Adiposo , Termogênese , Animais , Camundongos , Células 3T3-L1 , Histona Metiltransferases , Camundongos Endogâmicos C57BL , Termogênese/genética
2.
Clin Chem Lab Med ; 62(6): 1198-1205, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38232092

RESUMO

OBJECTIVES: Thymic epithelial tumors (TET) patients are at high risk of autoimmune and hypoimmune complications. Limited evidence is available on the potential risk of immune-related and inflammatory reactions induced by SARS-Cov-2 vaccine in this patient population. METHODS: In order to identify subjects at higher risk for vaccine complications, we prospectively evaluated a panel of serum biomarkers related to inflammation (TNF-α, IL-1ß, -6, -10, -12, and -17A, IFN-α, ß and γ, MPO, MMP-9), and vascular damage (E- and P-selectin, VEGF-A, P-ANCA and MCP-1) in 44 TET patients and in 30 healthy controls along the whole SARS-Cov-2 vaccine cycle. RESULTS: About 50 % of subjects (either TET and controls) showed an increase of serum biochemical markers of inflammation and endothelial damage with a large heterogeneity of values. Such increase appeared early, after the first dose in control subjects and later, after the second dose in TET patients (in which we observed mainly an increase of inflammatory biomarkers). The values normalized after about 3 months and did not increase after the third, booster dose. No autoimmune or vascular complications were observed in the study subjects and no difference was observed in terms of vaccine response among subjects showing serum biomarkers increase and those who experienced no changes. CONCLUSIONS: Our data highlight the relevance of Sars-Cov-2 vaccine in TET patients, as it resulted safe and prevented severe COVID-19. However, further studies are awaited to explore the mechanisms and the potential consequences of the observed increase of serum inflammatory and vascular damage biomarkers.


Assuntos
Biomarcadores , Vacinas contra COVID-19 , COVID-19 , Inflamação , Neoplasias do Timo , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Biomarcadores/sangue , Inflamação/sangue , Idoso , Neoplasias do Timo/sangue , Neoplasias do Timo/imunologia , Vacinas contra COVID-19/efeitos adversos , COVID-19/sangue , COVID-19/prevenção & controle , Adulto , Neoplasias Epiteliais e Glandulares/sangue , SARS-CoV-2/imunologia , Estudos Prospectivos , Vacinas de mRNA
3.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069054

RESUMO

Chlorogenic acid (CGA), a polyphenol found mainly in coffee and tea, exerts antioxidant, anti-inflammatory and anti-apoptotic effects at the gastrointestinal level. However, although CGA is known to cross the blood-brain barrier (BBB), its effects on the CNS are still unknown. Oligodendrocytes (OLs), the myelin-forming cells in the CNS, are the main target in demyelinating neuroinflammatory diseases such as multiple sclerosis (MS). We evaluated the antioxidant, anti-inflammatory and anti-apoptotic roles of CGA in M03-13, an immortalized human OL cell line. We found that CGA reduces intracellular superoxide ions, mitochondrial reactive oxygen species (ROS) and NADPH oxidases (NOXs) /dual oxidase 2 (DUOX2) protein levels. The stimulation of M03-13 cells with TNFα activates the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-kB) pathway, leading to an increase in superoxide ion, NOXs/DUOX2 and phosphorylated extracellular regulated protein kinase (pERK) levels. In addition, tumor necrosis factor alpha (TNF-α) stimulation induces caspase 8 activation and the cleavage of poly-ADP-ribose polymerase (PARP). All these TNFα-induced effects are reversed by CGA. Furthermore, CGA induces a blockade of proliferation, driving cells to differentiation, resulting in increased mRNA levels of myelin basic protein (MBP) and proteolipid protein (PLP), which are major markers of mature OLs. Overall, these data suggest that dietary supplementation with this polyphenol could play an important beneficial role in autoimmune neuroinflammatory diseases such as MS.


Assuntos
Antioxidantes , Ácido Clorogênico , Humanos , Antioxidantes/farmacologia , Ácido Clorogênico/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Superóxidos , Doenças Neuroinflamatórias , Oxidases Duais , Anti-Inflamatórios/farmacologia , Polifenóis/farmacologia , Oligodendroglia
4.
Cell Death Dis ; 14(9): 638, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758718

RESUMO

Despite intense research efforts, glioblastoma remains an incurable brain tumor with a dismal median survival time of 15 months. Thus, identifying new therapeutic targets is an urgent need. Here, we show that the lysine methyltransferase SETD8 is overexpressed in 50% of high-grade gliomas. The small molecule SETD8 inhibitor UNC0379, as well as siRNA-mediated inhibition of SETD8, blocked glioblastoma cell proliferation, by inducing DNA damage and activating cell cycle checkpoints. Specifically, in p53-proficient glioblastoma cells, SETD8 inhibition and DNA damage induced p21 accumulation and G1/S arrest whereas, in p53-deficient glioblastoma cells, DNA damage induced by SETD8 inhibition resulted in G2/M arrest mediated by Chk1 activation. Checkpoint abrogation, by the Wee1 kinase inhibitor adavosertib, induced glioblastoma cell lines and primary cells, DNA-damaged by UNC0379, to progress to mitosis where they died by mitotic catastrophe. Finally, UNC0379 and adavosertib synergized in restraining glioblastoma growth in a murine xenograft model, providing a strong rationale to further explore this novel pharmacological approach for adjuvant glioblastoma treatment.


Assuntos
Glioblastoma , Doenças do Recém-Nascido , Humanos , Animais , Camundongos , Recém-Nascido , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Apoptose , Proteína Supressora de Tumor p53 , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular
5.
Biomedicines ; 11(9)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37761026

RESUMO

Background: Non-Hodgkin's lymphoma (NHL), the most frequent hematological neoplasm worldwide, represents a heterogeneous group of malignancies. The etiology of NHL remains to be fully elucidated, but the role of adipose tissue (AT) in immune function via the secretion of adipokines was recently recognized. Among adipokines, adiponectin has garnered attention for its beneficial properties. This study aimed to explore the in vitro effects of AdipoRon, an adiponectin agonist, on JVM-2, a lymphoblast cell line used as a representative disease model. Methods: JVM-2 cells were treated with different concentrations of AdipoRon to evaluate its effects on viability (via an MTT test), cell cycle distribution (via an FACS analysis), invasiveness (via a Matrigel assay) and colony-forming ability; protein expression was assessed via a real-time PCR (qPCR) and/or Western blotting (WB). Results: We found that the prolonged exposure of JVM-2 cells to AdipoRon led to a reduction in their viability due to a cytostatic effect. Additionally, AdipoRon stimulated both the formation of cell colonies and the expression of E-cadherin. Interestingly, the administration of AdipoRon increased the invasive potential of JVM-2 cells. Conclusions: Our findings indicate that adiponectin is involved in the regulation of different cellular processes of JVM-2 cells, supporting its potential association with a pro-tumorigenic phenotype and indicating that it might contribute to the increased aggressiveness and metastatic potential of B lymphoma cells. However, additional studies are required to fully understand the molecular mechanisms of adiponectin's actions on lymphoblasts and whether it may represent a marker of disease.

6.
Front Immunol ; 14: 1233056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705978

RESUMO

Background: Thymic epithelial tumors (TETs) are rare malignancies with heterogeneous clinical manifestations. The high frequency of autoimmune paraneoplastic disorders observed in such patients requires caution when using COVID-19 vaccines. Furthermore, TETs are often associated with severe immunodeficiency, making it difficult to predict vaccine immunization. Therefore, we aimed to evaluate immune response to COVID-19 vaccine in patients with TETs. Methods: We conducted a prospective study enrolling patients who underwent the SARS-Cov-2 mRNA full vaccine cycle (two doses plus a booster after 6 months of BNT162b2). All patients were enrolled before receiving 1st vaccine dose and were followed over the vaccination cycle for up to 6 months after the booster dose to i) assess humoral and cellular responses, ii) define biomarkers predictive of effective immunization, and iii) evaluate the safety of the vaccine. Results: At the end of the full vaccine cycle, 27 (61.4%) patients developed humoral and 38 (86.4%) cellular responses (IFN γ release by stimulated cells) and showed an increase in activated TH1 and TH17 cells, particularly significant after the booster dose. The number of B and T lymphocytes at baseline was predictive of humoral and cellular responses, respectively. Patients with no evidence of tumor lesions had a higher probability of achieving a humoral response than those with evidence of the disease. Furthermore, the percentage of patients with immune-related disorders (75%), particularly Good's syndrome (47.7%) and myasthenia gravis (29.5%), did not change over the entire vaccine cycle. Overall, 19 of the 44 enrolled patients (43.2%) had COVID-19 during the observation period; none required hospitalization or oxygen support, and no fatalities were observed. Conclusion: SARS-Cov-2 mRNA vaccine determines the immune responses in patients with TET, particularly after the booster dose, and in patients with no evidence of tumor lesions. Preliminary analysis of B and T lymphocytes may help identify patients who have a lower probability of achieving effective humoral and cellular responses and thus may need passive immunization. The vaccine prevented severe COVID-19 infection and is safe.


Assuntos
Doenças Autoimunes , COVID-19 , Neoplasias Epiteliais e Glandulares , Humanos , Vacinas contra COVID-19/efeitos adversos , Vacina BNT162 , Estudos Prospectivos , COVID-19/prevenção & controle , SARS-CoV-2 , Imunidade
8.
Endocr Relat Cancer ; 30(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36877008

RESUMO

Anaplastic thyroid cancer (ATC) is a rare thyroid tumor that frequently originates from the dedifferentiation of a well-differentiated papillary or follicular thyroid cancer. Type 2 deiodinase (D2), responsible for the activation of the thyroid hormone thyroxine into tri-iodothyronine (T3), is expressed in normal thyroid cells and its expression is strongly downregulated in papillary thyroid cancer. In skin cancer, D2 has been associated with cancer progression, dedifferentiation, and epithelial-mesenchymal transition. Here, we show that D2 is highly expressed in anaplastic compared to papillary thyroid cancer cell lines and that D2-derived T3 is required for ATC cell proliferation. D2 inhibition is associated with G1 growth arrest and induction of cell senescence, together with reduced cell migration and invasive potential. Finally, we found that mutated p5372R(R248W), frequently found in ATC, is able to induce D2 expression in transfected papillary thyroid cancer cells. Our results show that the action of D2 is crucial for ATC proliferation and invasiveness, providing a potential new therapeutic target for the treatment of ATC.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Anaplásico da Tireoide/metabolismo , Iodeto Peroxidase/genética , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/patologia , Senescência Celular , Linhagem Celular Tumoral
9.
Nat Commun ; 14(1): 1244, 2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871014

RESUMO

The Thyroid Hormone (TH) activating enzyme, type 2 Deiodinase (D2), is functionally required to elevate the TH concentration during cancer progression to advanced stages. However, the mechanisms regulating D2 expression in cancer still remain poorly understood. Here, we show that the cell stress sensor and tumor suppressor p53 silences D2 expression, thereby lowering the intracellular THs availability. Conversely, even partial loss of p53 elevates D2/TH resulting in stimulation and increased fitness of tumor cells by boosting a significant transcriptional program leading to modulation of genes involved in DNA damage and repair and redox signaling. In vivo genetic deletion of D2 significantly reduces cancer progression and suggests that targeting THs may represent a general tool reducing invasiveness in p53-mutated neoplasms.


Assuntos
Iodeto Peroxidase , Proteína Supressora de Tumor p53 , Dano ao DNA , Exercício Físico , Terapia Genética
10.
Front Immunol ; 13: 985433, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263058

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a rare, severe complication of COVID-19. A better knowledge of immunological, cellular, and genetic characteristics of MIS-C could help better understand the pathogenesis of the disease and contribute to identifying specific diagnostic biomarkers and develop targeted therapies. We studied 37 MIS-C children at hospital admission and 24 healthy controls analyzing serum cytokines (IFN-α, IFN-ß, IFN-γ, IL-6, IL-10, IL-17A, IL-12p70 and TNF), lymphocyte populations by flow cytometry and 386 genes related to autoimmune diseases, autoinflammation and primary immunodeficiencies by NGS. MIS-C patients showed a significant increase of serum IFNγ (despite a significant reduction of activated Th1) and ILs, even if with a great heterogeneity among patients, revealing different pathways involved in MIS-C pathogenesis and suggesting that serum cytokines at admission may help to select the inflammatory pathways to target in each patient. Flow cytometry demonstrated a relevant reduction of T populations while the percentage of B cell was increased in agreement with an autoimmune pathogenesis of MIS-C. Genetic analysis identified variants in 34 genes and 83.3% of patients had at least one gene variant. Among these, 9 were mutated in more patients. Most genes are related to autoimmune diseases like ATM, NCF1, MCM4, FCN3, and DOCK8 or to autoinflammatory diseases associated to the release of IFNγ like PRF1, NOD2, and MEF. Thus, an incomplete clearance of the Sars-CoV2 during the acute phase may induce tissue damage and self-antigen exposure and genetic variants can predispose to hyper-reactive immune dysregulation events of MIS-C-syndrome. Type II IFN activation and cytokine responses (mainly IL-6 and IL-10) may cause a cytokine storm in some patients with a more severe acute phase of the disease, lymphopenia and multisystemic organ involvement. The timely identification of such patients with an immunocytometric panel might be critical for targeted therapeutic management.


Assuntos
Doenças Autoimunes , COVID-19 , Síndromes de Imunodeficiência , Criança , Humanos , Interleucina-10 , SARS-CoV-2 , Interleucina-17 , Interleucina-6 , RNA Viral , Citocinas/metabolismo , Biomarcadores , Autoantígenos , Fatores de Troca do Nucleotídeo Guanina
11.
Transl Med Commun ; 7(1): 22, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093039

RESUMO

Background: The pathogenesis of the novel described multisystem inflammatory syndrome in children (MIS-C) and Kawasaki disease (KD) is still debated as it is not clear if they are the same or different nosological entities. However, for both the diseases a rapid and unequivocal diagnosis is mandatory to start the therapy before the onset of severe complications. In this study, we aimed to evaluate the white cell populations in MIS-C and KD as potential markers to discriminate between the two diseases. Methods: We studied white cell populations by flow cytometry in 46 MIS-C and 28 KD patients in comparison to 70 age-matched healthy children. Results: MIS-C patients had a significant lymphopenia that involved both B and T populations while KD patients showed a significant neutrophilia and thrombocythemia. Granulocyte/lymphocyte ratio helped to diagnose both MIS-C and KD with a high diagnostic sensitivity, while a multivariate analysis of granulocyte and T lymphocyte number contributed to discriminate between the two diseases. Conclusions: The relevant lymphopenia observed in MIS-C patients suggests that the disease would be a post-infectious sequel of COVID-19 immunologically amplified by a massive cytokine release, while the significant neutrophilia and thrombocythemia observed in KD confirmed that the disorder has the genesis of a systemic vasculitis. The analysis of a panel of circulating cells may help to early diagnose and to discriminate between the two diseases. Supplementary Information: The online version contains supplementary material available at 10.1186/s41231-022-00128-2.

12.
Cell Biochem Funct ; 40(7): 706-717, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35981137

RESUMO

The chromosomal translocation t(4;11)(q21;q23), a hallmark of an aggressive form of acute lymphoblastic leukemia (ALL), encodes mixed-lineage leukemia (MLL)-AF4 oncogenic chimera that triggers aberrant transcription of genes involved in lymphocyte differentiation, including HOXA9 and MEIS1. The scaffold protein 14-3-3θ, which promotes the binding of MLL-AF4 to the HOXA9 promoter, is a target of MiR-27a, a tumor suppressor in different human leukemia cell types. We herein study the role of MiR-27a in the pathogenesis of t(4;11) ALL. Reverse transcription quantitative PCR (qPCR) reveals that MiR-27a and 14-3-3θ expression is inversely correlated in t(4;11) ALL cell lines; interestingly, MiR-27a relative expression is significantly lower in patients affected by t(4;11) ALL than in patients affected by the less severe t(12;21) leukemia. In t(4;11) leukemia cells, ectopic expression of MiR-27a decreases protein level of 14-3-3θ and of the key transcription factor RUNX1. We show for the first time that MiR-27a also targets AF4 and MLL-AF4; in agreement, MiR-27a overexpression strongly reduces AF4 and MLL-AF4 protein levels in RS4;11 cells. Consequent to AF4 and MLL-AF4 downregulation, MiR-27a overexpression negatively affects transcription of HOXA9 and MEIS1 in different t(4;11) leukemia cell lines. In agreement, we show through chromatin immunoprecipitation experiments that MiR-27a overexpression impairs the binding of MLL-AF4 to the HOXA9 promoter. Lastly, we found that MiR-27a overexpression decreases viability, proliferation, and clonogenicity of t(4;11) cells, whereas it enhances their apoptotic rate. Overall, our study identifies the first microRNAthat strikes in one hit four crucial drivers of blast transformation in t(4;11) leukemia. Therefore, MiR-27a emerges as a new promising therapeutic target for this aggressive and poorly curable form of leukemia.


Assuntos
MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Subunidade alfa 2 de Fator de Ligação ao Core , Humanos , Ativação Linfocitária , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
13.
J Clin Med ; 11(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35893398

RESUMO

We previously observed an increase of serum interleukins (IL) and a reduction of most lymphocyte subpopulations in hospitalized COVID-19 patients. Herein, we aimed to evaluate the changes in serum IL-6, IL-10, and IL-17A levels and cytometric lymphocyte profiles in 144 COVID-19 patients at admission and after one week, also in relation to steroid treatment before hospitalization. After one week of hospitalization, we found that: (i) total lymphocytes were increased in all patients; (ii) neutrophils and IL-6 were reduced in mild/moderate patients; (iii) B lymphocytes were increased in severe patients; (iv) T lymphocyte populations increased in mild/moderate patients. In the eight patients that died during hospitalization, total leukocytes increased while T, T helper, T cytotoxic, T regulatory, and NK lymphocytes showed a reducing trend in five of the eight patients. Even if seven days are too few to evaluate the adaptive immunity of patients, we found that the steroid therapy was associated with a reduced COVID-19 inflammation and cytokine activation only in patients with severe disease, while in patients with less severe disease, the steroid therapy seems to have immunosuppressive effects on lymphocyte populations, and this could hamper the antiviral response. A better knowledge of cytokine and lymphocyte alterations in each COVID-19 patient could be useful to plan better treatment with steroids or cytokine targeting.

14.
Metabolites ; 12(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35629909

RESUMO

Skeletal muscle is a key energy-regulating organ, skilled in rapidly boosting the rate of energy production and substrate consumption following increased workload demand. The alteration of skeletal muscle metabolism is directly associated with numerous pathologies and disorders. Thyroid hormones (THs) and their receptors (TRs, namely, TRα and TRß) exert pleiotropic functions in almost all cells and tissues. Skeletal muscle is a major THs-target tissue and alterations of THs levels have multiple influences on the latter. However, the biological role of THs and TRs in orchestrating metabolic pathways in skeletal muscle has only recently started to be addressed. The purpose of this paper is to investigate the muscle metabolic response to TRs abrogation, by using two different mouse models of global TRα- and TRßKO. In line with the clinical features of resistance to THs syndromes in humans, characterized by THRs gene mutations, both animal models of TRs deficiency exhibit developmental delay and mitochondrial dysfunctions. Moreover, using transcriptomic and metabolomic approaches, we found that the TRs-THs complex regulates the Fatty Acids (FAs)-binding protein GOT2, affecting FAs oxidation and transport in skeletal muscle. In conclusion, these results underline a new metabolic role of THs in governing muscle lipids distribution and metabolism.

15.
J Transl Med ; 19(1): 403, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556132

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) pandemic had a 1st wave in Europe from March to May 2020 and a 2nd wave since September 2020. We previously studied 35 hospitalized COVID-19 patients of the 1st wave demonstrating a cytokine storm and the exhaustion of most lymphocyte subpopulations. Herein, we describe the results obtained from COVID-19 patients of the 2nd wave. METHODS: We analyzed interleukin (IL)-6 by human-specific enzyme-linked immunosorbent assay and a large set of lymphocyte subpopulations by flow cytometry in 274 COVID-19 patients hospitalized from September 2020 to May 2021. RESULTS: Patients of 2nd wave compared with those of 1st wave showed lower serum IL-6 levels and a higher number of B and most T lymphocyte subpopulations in advanced stages, in relation with the age and the gender. On the other hand, we observed in 2nd wave patients: (i) a reduction of most lymphocyte subpopulations at mild and moderate stages; (ii) a reduction of natural killer cells and T regulatory cells together with a higher number of activated T helper (TH) 17 lymphocytes in all stages, which were mainly related to steroid and azithromycin therapies before hospitalization. CONCLUSIONS: COVID-19 had a less severe impact in patients of the 2nd wave in advanced stages, while the impact appeared more severe in patients of mild and moderate stages, as compared with 1st wave patients. This finding suggests that in COVID-19 patients with milder expression at diagnosis, steroid and azithromycin therapies appear to worsen the immune response against the virus. Furthermore, the cytometric profile may help to drive targeted therapies by monoclonal antibodies to modulate specific IL/lymphocyte inhibition or activation in COVID-19 patients.


Assuntos
COVID-19 , Humanos , Células Matadoras Naturais , Contagem de Linfócitos , Pandemias , SARS-CoV-2
16.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281225

RESUMO

Thyroid hormones (THs) are key regulators of different biological processes. Their action involves genomic and non-genomic mechanisms, which together mediate the final effects of TH in target tissues. However, the proportion of the two processes and their contribution to the TH-mediated effects are still poorly understood. Skeletal muscle is a classical target tissue for TH, which regulates muscle strength and contraction, as well as energetic metabolism of myofibers. Here we address the different contribution of genomic and non-genomic action of TH in skeletal muscle cells by specifically silencing the deiodinase Dio2 or the ß3-Integrin expression via CRISPR/Cas9 technology. We found that myoblast proliferation is inversely regulated by integrin signal and the D2-dependent TH activation. Similarly, inhibition of the nuclear receptor action reduced myoblast proliferation, confirming that genomic action of TH attenuates proliferative rates. Contrarily, genomic and non-genomic signals promote muscle differentiation and the regulation of the redox state. Taken together, our data reveal that integration of genomic and non-genomic signal pathways finely regulates skeletal muscle physiology. These findings not only contribute to the understanding of the mechanisms involved in TH modulation of muscle physiology but also add insight into the interplay between different mechanisms of action of TH in muscle cells.


Assuntos
Células Musculares/fisiologia , Músculo Esquelético/fisiologia , Hormônios Tireóideos/fisiologia , Animais , Diferenciação Celular , Integrina beta3/fisiologia , Iodeto Peroxidase/fisiologia , Camundongos , Músculo Esquelético/citologia , Iodotironina Desiodinase Tipo II
17.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807720

RESUMO

Inside the adult CNS, oligodendrocyte progenitor cells (OPCS) are able to proliferate, migrate and differentiate into mature oligodendrocytes (OLs) which are responsible for the production of myelin sheet and energy supply for neurons. Moreover, in demyelinating diseases, OPCs are recruited to the lesion areas where they undergo differentiation and myelin synthesis. Serotonin (5-hydroxytryptamine, 5-HT) is involved in OLs' development and myelination, but so far the molecular mechanisms involved or the effects of 5-HT on mitochondria function have not yet been well documented. Our data show that 5-HT inhibits migration and proliferation committing cells toward differentiation in an immortalized human oligodendrocyte precursor cell line, M03-13. Migration blockage is mediated by reactive oxygen species (ROS) generation since antioxidants, such as Vit C and Cu-Zn superoxide dismutase, prevent the inhibitory effects of 5-HT on cell migration. 5-HT inhibits OPC migration and proliferation and increases OL phenotypic markers myelin basic protein (MBP) and Olig-2 via protein kinase C (PKC) activation since the inhibitor of PKC, bis-indolyl-maleimide (BIM), counteracts 5-HT effects. NOX inhibitors as well, reverse the effects of 5-HT, indicating that 5-HT influences the maturation process of OPCs by NOX-dependent ROS production. Finally, 5-HT increases mitochondria function and antioxidant activity. The identification of the molecular mechanisms underlying the effects of 5-HT on maturation and energy metabolism of OPCs could pave the way for the development of new treatments for autoimmune demyelinating diseases such as Multiple Sclerosis where oligodendrocytes are the primary target of immune attack.


Assuntos
Mitocôndrias/metabolismo , Oligodendroglia/metabolismo , Serotonina/farmacologia , Células-Tronco/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Proteína Básica da Mielina/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924850

RESUMO

The chromosomal translocation t(4;11) marks an infant acute lymphoblastic leukemia associated with dismal prognosis. This rearrangement leads to the synthesis of the MLL-AF4 chimera, which exerts its oncogenic activity by upregulating transcription of genes involved in hematopoietic differentiation. Crucial for chimera's aberrant activity is the recruitment of the AF4/ENL/P-TEFb protein complex. Interestingly, a molecular interactor of AF4 is fibroblast growth factor receptor 2 (FGFR2). We herein analyze the role of FGFR2 in the context of leukemia using t(4;11) leukemia cell lines. We revealed the interaction between MLL-AF4 and FGFR2 by immunoprecipitation, western blot, and immunofluorescence experiments; we also tested the effects of FGFR2 knockdown, FGFR2 inhibition, and FGFR2 stimulation on the expression of the main MLL-AF4 target genes, i.e., HOXA9 and MEIS1. Our results show that FGFR2 and MLL-AF4 interact in the nucleus of leukemia cells and that FGFR2 knockdown, which is associated with decreased expression of HOXA9 and MEIS1, impairs the binding of MLL-AF4 to the HOXA9 promoter. We also show that stimulation of leukemia cells with FGF2 increases nuclear level of FGFR2 in its phosphorylated form, as well as HOXA9 and MEIS1 expression. In contrast, preincubation with the ATP-mimetic inhibitor PD173074, before FGF2 stimulation, reduced FGFR2 nuclear amount and HOXA9 and MEIS1 transcript level, thereby indicating that MLL-AF4 aberrant activity depends on the nuclear availability of FGFR2. Overall, our study identifies FGFR2 as a new and promising therapeutic target in t(4;11) leukemia.


Assuntos
Proteínas de Homeodomínio/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Linhagem Celular Tumoral , Fator 2 de Crescimento de Fibroblastos , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Translocação Genética
19.
Nanoscale ; 13(10): 5251-5269, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33666624

RESUMO

Unraveling the proteins interacting with nanoparticles (NPs) in biological fluids, such as blood, is pivotal to rationally design NPs for drug delivery. The protein corona (PrC), formed on the NP surface, represents an interface between biological components and NPs, dictating their pharmacokinetics and biodistribution. PrC composition depends on biological environments around NPs and on their intrinsic physicochemical properties. We generated different formulations of non-ionic surfactant/non-phospholipid vesicles, called niosomes (NIOs), using polysorbates which are biologically safe, cheap, non-toxic and scarcely immunogenic. PrC composition and relative protein abundance for all designed NIOs were evaluated ex vivo in human plasma (HP) by quantitative label-free proteomics. We studied the correlation of the relative protein abundance in the corona with cellular uptake of the PrC-NIOs in healthy and cancer human cell lines. Our results highlight the effects of polysorbates on nano-bio interactions to identify a protein pattern most properly aimed to drive the NIO targeting in vivo, and assess the best conditions of PrC-NIO NP uptake into the cells. This study dissected the biological identity in HP of polysorbate-NIOs, thus contributing to shorten their passage from preclinical to clinical studies and to lay the foundations for a personalized PrC.


Assuntos
Nanopartículas , Coroa de Proteína , Sistemas de Liberação de Medicamentos , Humanos , Lipossomos , Distribuição Tecidual
20.
Life Sci ; 261: 118355, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32871183

RESUMO

AIMS: This study aims to cast light on immunocytometric alterations in COVID-19, a potentially fatal viral infection with heterogeneous clinical expression and a not completely defined pathophysiology. METHODS: We studied 35 COVID patients at hospital admission testing by cytofluorimetry a large panel of lymphocyte subpopulations and serum tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-17A and the soluble receptor of IL-17A (IL-17RA). KEY FINDINGS: At hospital admission, total lymphocytes and most T and B subpopulations were reduced in 50-80% of patients, with close relationship to disease severity. While activated T helper 1 (TH1) and TH17 cells resulted normal or higher. Serum IL-6 was increased in all patients, while TNF-α and IL-17A were higher in advanced stages. A patient subset with low severity had very high IL-17RA levels. Tocilizumab treatment caused an increase of IL-17A in 3/6 patients and a reduction in 3 others, while the lymphocyte number increased in 3 patients and did not change in the others. SIGNIFICANCE: Cytofluorimetry revealed a functional exhaustion of most lymphocyte populations in COVID patients not involving activated TH1 and TH17. Consequently, there was a relevant cytokines production that contributes to impair the respiratory inflammation. The increase of TH17 and IL-17 in a subset of cases and the evidence of a significant increase of IL-17RA (that prevents the interaction of IL-17 with the cell receptor) in patients with low severity suggest that some patients could benefit from monoclonal antibodies treatment targeting IL-17 pathway. Immunocytofluorimetric markers may contribute to a personalized therapy in COVID patients.


Assuntos
Infecções por Coronavirus/imunologia , Citocinas/sangue , Citometria de Fluxo/métodos , Subpopulações de Linfócitos/imunologia , Pneumonia Viral/imunologia , Idoso , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacologia , COVID-19 , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/virologia , Feminino , Humanos , Inflamação/imunologia , Inflamação/virologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Pandemias , Admissão do Paciente , Pneumonia Viral/fisiopatologia , Pneumonia Viral/virologia , Medicina de Precisão , Estudos Prospectivos , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...