Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Front Hum Neurosci ; 18: 1320806, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450221

RESUMO

The Deep Brain Stimulation (DBS) Think Tank XI was held on August 9-11, 2023 in Gainesville, Florida with the theme of "Pushing the Forefront of Neuromodulation". The keynote speaker was Dr. Nico Dosenbach from Washington University in St. Louis, Missouri. He presented his research recently published in Nature inn a collaboration with Dr. Evan Gordon to identify and characterize the somato-cognitive action network (SCAN), which has redefined the motor homunculus and has led to new hypotheses about the integrative networks underpinning therapeutic DBS. The DBS Think Tank was founded in 2012 and provides an open platform where clinicians, engineers, and researchers (from industry and academia) can freely discuss current and emerging DBS technologies, as well as logistical and ethical issues facing the field. The group estimated that globally more than 263,000 DBS devices have been implanted for neurological and neuropsychiatric disorders. This year's meeting was focused on advances in the following areas: cutting-edge translational neuromodulation, cutting-edge physiology, advances in neuromodulation from Europe and Asia, neuroethical dilemmas, artificial intelligence and computational modeling, time scales in DBS for mood disorders, and advances in future neuromodulation devices.

2.
Neuromodulation ; 27(3): 509-519, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36797194

RESUMO

BACKGROUND: Deep brain stimulation (DBS) programming is time intensive. Recent advances in sensing technology of local field potentials (LFPs) may enable improvements. Few studies have compared the use of this technology with standard of care. OBJECTIVE/HYPOTHESIS: Sensing technology of subthalamic nucleus (STN) DBS leads in Parkinson's disease (PD) is reliable and predicts the optimal contacts and settings as predicted by clinical assessment. MATERIALS AND METHODS: Five subjects with PD (n = 9 hemispheres) with bilateral STN DBS and sensing capable battery replacement were recruited. An LFP sensing review of all bipolar contact pairs was performed three times. Contact with the maximal beta peak power (MBP) was then clinically assessed in a double-blinded fashion, and five conditions were tested: 1) entry settings, 2) off stimulation, 3) MBP at 30 µs, 4) MBP at 60 µs, and 5) MBP at 90 µs. RESULTS: Contact and frequency of the MBP power in all hemispheres did not differ across sessions. The entry settings matched with the contact with the MBP power in 5 of 9 hemispheres. No clinical difference was evident in the stimulation conditions. The clinician and subject preferred settings determined by MBP power in 7 of 9 and 5 of 7 hemispheres, respectively. CONCLUSIONS: This study indicates that STN LFPs in PD recorded directly from contacts of the DBS lead provide consistent recordings across the frequency range and a reliably detected beta peak. Furthermore, programming based on the MBP power provides at least clinical equivalence to standard of care programming with STN DBS.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Projetos Piloto , Núcleo Subtalâmico/fisiologia
3.
Brain Stimul ; 16(3): 867-878, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37217075

RESUMO

OBJECTIVE: Despite advances in the treatment of psychiatric diseases, currently available therapies do not provide sufficient and durable relief for as many as 30-40% of patients. Neuromodulation, including deep brain stimulation (DBS), has emerged as a potential therapy for persistent disabling disease, however it has not yet gained widespread adoption. In 2016, the American Society for Stereotactic and Functional Neurosurgery (ASSFN) convened a meeting with leaders in the field to discuss a roadmap for the path forward. A follow-up meeting in 2022 aimed to review the current state of the field and to identify critical barriers and milestones for progress. DESIGN: The ASSFN convened a meeting on June 3, 2022 in Atlanta, Georgia and included leaders from the fields of neurology, neurosurgery, and psychiatry along with colleagues from industry, government, ethics, and law. The goal was to review the current state of the field, assess for advances or setbacks in the interim six years, and suggest a future path forward. The participants focused on five areas of interest: interdisciplinary engagement, regulatory pathways and trial design, disease biomarkers, ethics of psychiatric surgery, and resource allocation/prioritization. The proceedings are summarized here. CONCLUSION: The field of surgical psychiatry has made significant progress since our last expert meeting. Although weakness and threats to the development of novel surgical therapies exist, the identified strengths and opportunities promise to move the field through methodically rigorous and biologically-based approaches. The experts agree that ethics, law, patient engagement, and multidisciplinary teams will be critical to any potential growth in this area.


Assuntos
Estimulação Encefálica Profunda , Transtornos Mentais , Neurocirurgia , Psicocirurgia , Humanos , Estados Unidos , Procedimentos Neurocirúrgicos , Transtornos Mentais/cirurgia
4.
Parkinsonism Relat Disord ; 109: 105328, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36827951

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the globus pallidus interna (GPi) is an effective therapy for select patients with primary dystonia. DBS programming for dystonia is often challenging due to variable time to symptomatic improvement or stimulation induced side effects (SISE) such as capsular or optic tract activation which can prolong device optimization. OBJECTIVE: To characterize the safety and tolerability of active recharge biphasic DBS (bDBS) in primary dystonia and to compare it to conventional clinical DBS (clinDBS). METHODS: Ten subjects with primary dystonia and GPi DBS underwent a single center, double blind, nonrandomized crossover study comparing clinDBS versus bDBS. The testing occurred over two-days. bDBS and clinDBS were administered on separate days and each was activated for 6 h. Rating scales were collected by video recording and scored by four blinded movement disorders trained neurologists. RESULTS: The bDBS paradigm was safe and well-tolerated in all ten subjects. There were no persistent SISE reported. The mean change in the Unified Dystonia Rating Scale after 4 h of stimulation was greater in bDBS when compared to clinDBS (-6.5 vs 0.3, p < 0.04). CONCLUSION: In this pilot study, we demonstrated that biphasic DBS is a novel stimulation paradigm which can be administered safely. The biphasic waveform revealed a greater immediate improvement. Further studies are needed to determine whether this immediate improvement persists with chronic stimulation or if clinDBS will eventually achieve similar levels of improvement to bDBS over time.


Assuntos
Estimulação Encefálica Profunda , Distonia , Distúrbios Distônicos , Humanos , Estudos Cross-Over , Estimulação Encefálica Profunda/efeitos adversos , Distonia/terapia , Distonia/etiologia , Distúrbios Distônicos/terapia , Distúrbios Distônicos/etiologia , Globo Pálido , Projetos Piloto , Resultado do Tratamento
5.
Front Hum Neurosci ; 16: 916627, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754768

RESUMO

Background: In prior reports, we described the design and initial performance of a fully implantable, bi-directional neural interface system for use in deep brain and other neurostimulation applications. Here we provide an update on the chronic, long-term neural sensing performance of the system using traditional 4-contact leads and extend those results to include directional 8-contact leads. Methods: Seven ovine subjects were implanted with deep brain stimulation (DBS) leads at different nodes within the Circuit of Papez: four with unilateral leads in the anterior nucleus of the thalamus and hippocampus; two with bilateral fornix leads, and one with bilateral hippocampal leads. The leads were connected to either an Activa PC+S® (Medtronic) or Percept PC°ledR (Medtronic) deep brain stimulation and recording device. Spontaneous local field potentials (LFPs), evoked potentials (EPs), LFP response to stimulation, and electrode impedances were monitored chronically for periods of up to five years in these subjects. Results: The morphology, amplitude, and latencies of chronic hippocampal EPs evoked by thalamic stimulation remained stable over the duration of the study. Similarly, LFPs showed consistent spectral peaks with expected variation in absolute magnitude dependent upon behavioral state and other factors, but no systematic degradation of signal quality over time. Electrode impedances remained within expected ranges with little variation following an initial stabilization period. Coupled neural activity between the two nodes within the Papez circuit could be observed in synchronized recordings up to 5 years post-implant. The magnitude of passive LFP power recorded from directional electrode segments was indicative of the contacts that produced the greatest stimulation-induced changes in LFP power within the Papez network. Conclusion: The implanted device performed as designed, providing the ability to chronically stimulate and record neural activity within this network for up to 5 years of follow-up.

7.
Front Hum Neurosci ; 16: 813387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308605

RESUMO

DBS Think Tank IX was held on August 25-27, 2021 in Orlando FL with US based participants largely in person and overseas participants joining by video conferencing technology. The DBS Think Tank was founded in 2012 and provides an open platform where clinicians, engineers and researchers (from industry and academia) can freely discuss current and emerging deep brain stimulation (DBS) technologies as well as the logistical and ethical issues facing the field. The consensus among the DBS Think Tank IX speakers was that DBS expanded in its scope and has been applied to multiple brain disorders in an effort to modulate neural circuitry. After collectively sharing our experiences, it was estimated that globally more than 230,000 DBS devices have been implanted for neurological and neuropsychiatric disorders. As such, this year's meeting was focused on advances in the following areas: neuromodulation in Europe, Asia and Australia; cutting-edge technologies, neuroethics, interventional psychiatry, adaptive DBS, neuromodulation for pain, network neuromodulation for epilepsy and neuromodulation for traumatic brain injury.

8.
Front Hum Neurosci ; 16: 1084782, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36819295

RESUMO

The deep brain stimulation (DBS) Think Tank X was held on August 17-19, 2022 in Orlando FL. The session organizers and moderators were all women with the theme women in neuromodulation. Dr. Helen Mayberg from Mt. Sinai, NY was the keynote speaker. She discussed milestones and her experiences in developing depression DBS. The DBS Think Tank was founded in 2012 and provides an open platform where clinicians, engineers and researchers (from industry and academia) can freely discuss current and emerging DBS technologies as well as the logistical and ethical issues facing the field. The consensus among the DBS Think Tank X speakers was that DBS has continued to expand in scope however several indications have reached the "trough of disillusionment." DBS for depression was considered as "re-emerging" and approaching a slope of enlightenment. DBS for depression will soon re-enter clinical trials. The group estimated that globally more than 244,000 DBS devices have been implanted for neurological and neuropsychiatric disorders. This year's meeting was focused on advances in the following areas: neuromodulation in Europe, Asia, and Australia; cutting-edge technologies, closed loop DBS, DBS tele-health, neuroethics, lesion therapy, interventional psychiatry, and adaptive DBS.

10.
Front Hum Neurosci ; 15: 644593, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953663

RESUMO

We estimate that 208,000 deep brain stimulation (DBS) devices have been implanted to address neurological and neuropsychiatric disorders worldwide. DBS Think Tank presenters pooled data and determined that DBS expanded in its scope and has been applied to multiple brain disorders in an effort to modulate neural circuitry. The DBS Think Tank was founded in 2012 providing a space where clinicians, engineers, researchers from industry and academia discuss current and emerging DBS technologies and logistical and ethical issues facing the field. The emphasis is on cutting edge research and collaboration aimed to advance the DBS field. The Eighth Annual DBS Think Tank was held virtually on September 1 and 2, 2020 (Zoom Video Communications) due to restrictions related to the COVID-19 pandemic. The meeting focused on advances in: (1) optogenetics as a tool for comprehending neurobiology of diseases and on optogenetically-inspired DBS, (2) cutting edge of emerging DBS technologies, (3) ethical issues affecting DBS research and access to care, (4) neuromodulatory approaches for depression, (5) advancing novel hardware, software and imaging methodologies, (6) use of neurophysiological signals in adaptive neurostimulation, and (7) use of more advanced technologies to improve DBS clinical outcomes. There were 178 attendees who participated in a DBS Think Tank survey, which revealed the expansion of DBS into several indications such as obesity, post-traumatic stress disorder, addiction and Alzheimer's disease. This proceedings summarizes the advances discussed at the Eighth Annual DBS Think Tank.

11.
Front Hum Neurosci ; 15: 651168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981207

RESUMO

Background: Freezing of gait (FOG) is a common symptom in Parkinson's disease (PD) and can be difficult to treat with dopaminergic medications or with deep brain stimulation (DBS). Novel stimulation paradigms have been proposed to address suboptimal responses to conventional DBS programming methods. Burst-cycling deep brain stimulation (BCDBS) delivers current in various frequencies of bursts (e.g., 4, 10, or 15 Hz), while maintaining an intra-burst frequency identical to conventional DBS. Objective: To evaluate the safety and tolerability of BCDBS in PD patients with FOG. Methods: Ten PD subjects with STN or GPi DBS and complaints of FOG were recruited for this single center, single blinded within-subject crossover study. For each subject, we compared 4, 10, and 15 Hz BCDBS to conventional DBS during the PD medication-OFF state. Results: There were no serious adverse events with BCDBS. It was feasible and straightforward to program BCDBS in the clinic setting. The benefit was comparable to conventional DBS in measures of FOG, functional mobility and in PD motor symptoms. BCDBS had lower battery consumption when compared to conventional DBS. Conclusions: BCDBS was feasible, safe and well tolerated and it has potential to be a viable future DBS programming strategy.

12.
Front Hum Neurosci ; 13: 368, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31680918

RESUMO

BACKGROUND: Conventional Parkinson's disease (PD) deep brain stimulation (DBS) utilizes a pulse with an active phase and a passive charge-balancing phase. A pulse-shaping strategy that eliminates the passive phase may be a promising approach to addressing movement disorders. OBJECTIVES: The current study assessed the safety and tolerability of square biphasic pulse shaping (sqBIP) DBS for use in PD. METHODS: This small pilot safety and tolerability study compared sqBiP versus conventional DBS. Nine were enrolled. The safety and tolerability were assessed over a 3-h period on sqBiP. Friedman's test compared blinded assessments at baseline, washout, and 30 min, 1 h, 2 h, and 3 h post sqBIP. RESULTS: Biphasic pulses were safe and well tolerated by all participants. SqBiP performed as well as conventional DBS without significant differences in motor scores nor accelerometer or gait measures. CONCLUSION: Biphasic pulses were well-tolerated and provided similar benefit to conventional DBS. Further studies should address effectiveness of sqBIP in select PD patients.

13.
Parkinsonism Relat Disord ; 46: 41-46, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29102253

RESUMO

BACKGROUND: Conventional deep brain stimulation (DBS) utilizes regular, high frequency pulses to treat medication-refractory symptoms in essential tremor (ET). Modifications of DBS pulse shape to achieve improved effectiveness is a promising approach. OBJECTIVES: The current study assessed the safety, tolerability and effectiveness of square biphasic pulse shaping as an alternative to conventional ET DBS. METHODS: This pilot study compared biphasic pulses (BiP) versus conventional DBS pulses (ClinDBS). Eleven ET subjects with clinically optimized ventralis intermedius nucleus DBS were enrolled. Objective measures were obtained over 3 h while ON BiP stimulation. RESULTS: There was observed benefit in the Fahn-Tolosa Tremor Rating Scale (TRS) for BiP conditions when compared to the DBS off condition and to ClinDBS setting. Total TRS scores during the DBS OFF condition (28.5 IQR = 24.5-35.25) were significantly higher than the other time points. Following active DBS, TRS improved to (20 IQR = 13.8-24.3) at ClinDBS setting and to (16.5 IQR = 12-20.75) at the 3 h period ON BiP stimulation (p = 0.001). Accelerometer recordings revealed improvement in tremor at rest (χ2 = 16.1, p = 0.006), posture (χ2 = 15.9, p = 0.007) and with action (χ2 = 32.1, p=<0.001) when comparing median total scores at ClinDBS and OFF DBS conditions to 3 h ON BiP stimulation. There were no adverse effects and gait was not impacted. CONCLUSION: BiP was safe, tolerable and effective on the tremor symptoms when tested up to 3 h. This study demonstrated the feasibility of applying a novel DBS waveform in the clinic setting. Larger prospective studies with longer clinical follow-up will be required.


Assuntos
Estimulação Encefálica Profunda/métodos , Tremor Essencial/terapia , Avaliação de Resultados em Cuidados de Saúde , Núcleos Ventrais do Tálamo , Idoso , Idoso de 80 Anos ou mais , Estimulação Encefálica Profunda/efeitos adversos , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto
14.
Mov Disord ; 32(4): 615-618, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28195407

RESUMO

BACKGROUND: Dystonia often has inconsistent benefits and requires more energy-demanding DBS settings. Studies suggest that squared biphasic pulses could provide significant clinical benefit; however, dystonia patients have not been explored. OBJECTIVES: To assess safety and tolerability of square biphasic DBS in dystonia patients. METHODS: This study included primary generalized or cervical dystonia patients with bilateral GPi DBS. Square biphasic pulses were implemented and patients were assessed at baseline, immediately postwashout, post-30-minute washout, 1 hour post- and 2 hours postinitiation of investigational settings. RESULTS: Ten participants completed the study. There were no patient-reported or clinician-observed side effects. There was improvement across time on the Toronto Western Spasmodic Torticollis Rating Scale (χ2 = 10.7; P = 0.031). Similar improvement was detected in objective gait measurements. CONCLUSIONS: Square biphasic stimulation appears safe and feasible in dystonia patients with GPi DBS. Further studies are needed to evaluate possible effectiveness particularly in cervical and gait features. © 2016 International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda/métodos , Distonia/terapia , Globo Pálido/fisiologia , Adulto , Idoso , Biofísica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Projetos Piloto , Índice de Gravidade de Doença , Adulto Jovem
15.
J Neural Transm (Vienna) ; 124(4): 417-430, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28160152

RESUMO

The dystonias are a group of disorders characterized by excessive muscle contractions leading to abnormal movements and postures. There are many different clinical manifestations and underlying causes. Deep brain stimulation (DBS) provides an effect treatment, but outcomes can vary considerably among the different subtypes of dystonia. Several variables are thought to contribute to this variation including age of onset and duration of dystonia, specific characteristics of the dystonic movements, location of stimulation and stimulator settings, and others. The potential contributions of genetic factors have received little attention. In this review, we summarize evidence that some of the variation in DBS outcomes for dystonia is due to genetic factors. The evidence suggests that more methodical genetic testing may provide useful information in the assessment of potential surgical candidates, and in advancing our understanding of the biological mechanisms that influence DBS outcomes.


Assuntos
Estimulação Encefálica Profunda , Distúrbios Distônicos/genética , Distúrbios Distônicos/terapia , Testes Genéticos , Testes Genéticos/métodos , Humanos
16.
Cerebellum ; 16(2): 577-594, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27734238

RESUMO

A role for the cerebellum in causing ataxia, a disorder characterized by uncoordinated movement, is widely accepted. Recent work has suggested that alterations in activity, connectivity, and structure of the cerebellum are also associated with dystonia, a neurological disorder characterized by abnormal and sustained muscle contractions often leading to abnormal maintained postures. In this manuscript, the authors discuss their views on how the cerebellum may play a role in dystonia. The following topics are discussed: The relationships between neuronal/network dysfunctions and motor abnormalities in rodent models of dystonia. Data about brain structure, cerebellar metabolism, cerebellar connections, and noninvasive cerebellar stimulation that support (or not) a role for the cerebellum in human dystonia. Connections between the cerebellum and motor cortical and sub-cortical structures that could support a role for the cerebellum in dystonia. Overall points of consensus include: Neuronal dysfunction originating in the cerebellum can drive dystonic movements in rodent model systems. Imaging and neurophysiological studies in humans suggest that the cerebellum plays a role in the pathophysiology of dystonia, but do not provide conclusive evidence that the cerebellum is the primary or sole neuroanatomical site of origin.


Assuntos
Cerebelo/fisiopatologia , Distonia/fisiopatologia , Animais , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Distonia/diagnóstico por imagem , Distonia/patologia , Humanos , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Vias Neurais/fisiopatologia
17.
Neuromodulation ; 19(4): 343-56, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27000764

RESUMO

OBJECTIVES: Evidence suggests that nonconventional programming may improve deep brain stimulation (DBS) therapy for movement disorders. The primary objective was to assess feasibility of testing the tolerability of several nonconventional settings in Parkinson's disease (PD) and essential tremor (ET) subjects in a single office visit. Secondary objectives were to explore for potential efficacy signals and to assess the energy demand on the implantable pulse-generators (IPGs). MATERIALS AND METHODS: A custom firmware (FW) application was developed and acutely uploaded to the IPGs of eight PD and three ET subjects, allowing delivery of several nonconventional DBS settings, including narrow pulse widths, square biphasic pulses, and irregular pulse patterns. Standard clinical rating scales and several objective measures were used to compare motor outcomes with sham, clinically-optimal and nonconventional settings. Blinded and randomized testing was conducted in a traditional office setting. RESULTS: Overall, the nonconventional settings were well tolerated. Under these conditions it was also possible to detect clinically-relevant differences in DBS responses using clinical rating scales but not objective measures. Compared to the clinically-optimal settings, some nonconventional settings appeared to offer similar benefit (e.g., narrow pulse widths) and others lesser benefit. Moreover, the results suggest that square biphasic pulses may deliver greater benefit. No unexpected IPG efficiency disadvantages were associated with delivering nonconventional settings. CONCLUSIONS: It is feasible to acutely screen nonconventional DBS settings using controlled study designs in traditional office settings. Simple IPG FW upgrades may provide more DBS programming options for optimizing therapy. Potential advantages of narrow and biphasic pulses deserve follow up.


Assuntos
Estimulação Encefálica Profunda/métodos , Tremor Essencial/terapia , Doença de Parkinson/terapia , Idoso , Fenômenos Biofísicos , Estudos de Coortes , Metabolismo Energético/fisiologia , Globo Pálido/fisiologia , Humanos , Pessoa de Meia-Idade , Projetos Piloto , Estatísticas não Paramétricas , Resultado do Tratamento
18.
Exp Neurol ; 273: 69-82, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26231574

RESUMO

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is used to treat movement disorders, including advanced Parkinson's disease (PD). The pathogenesis of PD and the therapeutic mechanisms of DBS are not well understood. Large animal models are essential for investigating the mechanisms of PD and DBS. The purpose of this study was to develop a novel sheep model of STN DBS and quantify the stimulation-evoked motor behaviors. To do so, a large sample of animals was chronically-implanted with commercial DBS systems. Neuroimaging and histology revealed that the DBS leads were implanted accurately relative to the neurosurgical plan and also precisely relative to the STN. It was also possible to repeatedly conduct controlled evaluations of stimulation-evoked motor behavior in the awake-state. The evoked motor responses depended on the neuroanatomical location of the electrode contact selected for stimulation, as contacts proximal to the STN evoked movements at significantly lower voltages. Tissue stimulation modeling demonstrated that selecting any of the contacts stimulated the STN, whereas selecting the relatively distal contacts often also stimulated thalamus but only the distal-most contact stimulated internal capsule. The types of evoked motor behaviors were specific to the stimulation frequency, as low but not high frequencies consistently evoked movements resembling human tremor or dyskinesia. Electromyography confirmed that the muscle activity underlying the tremor-like movements in the sheep was consistent with human tremor. Overall, this work establishes that the sheep is a viable a large-animal platform for controlled testing of STN DBS with objective motor outcomes. Moreover, the results support the hypothesis that exaggerated low-frequency activity within individual nodes of the motor network can drive symptoms of human movement disorders, including tremor and dyskinesia.


Assuntos
Estimulação Elétrica/métodos , Potencial Evocado Motor/fisiologia , Atividade Motora/fisiologia , Núcleo Subtalâmico/fisiologia , Animais , Biofísica , Eletrodos Implantados , Eletromiografia , Feminino , Imageamento por Ressonância Magnética , Masculino , Ovinos , Estatística como Assunto , Estatísticas não Paramétricas
19.
Brain ; 138(Pt 10): 2987-3002, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26220941

RESUMO

Abnormal dopamine neurotransmission is associated with many different genetic and acquired dystonic disorders. For instance, mutations in genes critical for the synthesis of dopamine, including GCH1 and TH cause l-DOPA-responsive dystonia. Despite evidence that implicates abnormal dopamine neurotransmission in dystonia, the precise nature of the pre- and postsynaptic defects that result in dystonia are not known. To better understand these defects, we generated a knock-in mouse model of l-DOPA-responsive dystonia (DRD) mice that recapitulates the human p.381Q>K TH mutation (c.1141C>A). Mice homozygous for this mutation displayed the core features of the human disorder, including reduced TH activity, dystonia that worsened throughout the course of the active phase, and improvement in the dystonia in response to both l-DOPA and trihexyphenidyl. Although the gross anatomy of the nigrostriatal dopaminergic neurons was normal in DRD mice, the microstructure of striatal synapses was affected whereby the ratio of axo-spinous to axo-dendritic corticostriatal synaptic contacts was reduced. Microinjection of l-DOPA directly into the striatum ameliorated the dystonic movements but cerebellar microinjections of l-DOPA had no effect. Surprisingly, the striatal dopamine concentration was reduced to ∼1% of normal, a concentration more typically associated with akinesia, suggesting that (mal)adaptive postsynaptic responses may also play a role in the development of dystonia. Administration of D1- or D2-like dopamine receptor agonists to enhance dopamine signalling reduced the dystonic movements, whereas administration of D1- or D2-like dopamine receptor antagonists to further reduce dopamine signalling worsened the dystonia, suggesting that both receptors mediate the abnormal movements. Further, D1-dopamine receptors were supersensitive; adenylate cyclase activity, locomotor activity and stereotypy were exaggerated in DRD mice in response to the D1-dopamine receptor agonist SKF 81297. D2-dopamine receptors exhibited a change in the valence in DRD mice with an increase in adenylate cyclase activity and blunted behavioural responses after challenge with the D2-dopamine receptor agonist quinpirole. Together, our findings suggest that the development of dystonia may depend on a reduction in dopamine in combination with specific abnormal receptor responses.


Assuntos
Dopaminérgicos/uso terapêutico , Distonia/tratamento farmacológico , Levodopa/uso terapêutico , Mutação/genética , Tirosina 3-Mono-Oxigenase/genética , Animais , Benzazepinas/farmacocinética , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Catecolaminas/metabolismo , Modelos Animais de Doenças , Antagonistas de Dopamina/farmacocinética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Distonia/diagnóstico por imagem , Distonia/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Cintilografia , Comportamento Estereotipado/fisiologia , Trítio/farmacocinética , Tirosina 3-Mono-Oxigenase/metabolismo
20.
Brain Res ; 1611: 56-64, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-25791619

RESUMO

Cerebellar degeneration is traditionally associated with ataxia. Yet, there are examples of both ataxia and dystonia occurring in individuals with cerebellar degeneration. There is also substantial evidence suggesting that cerebellar dysfunction alone may cause dystonia. The types of cerebellar defects that may cause ataxia, dystonia, or both have not been delineated. In the current study, we explored the relationship between cerebellar degeneration and dystonia using the leaner mouse mutant. Leaner mice have severe dystonia that is associated with dysfunctional and degenerating cerebellar Purkinje cells. Whereas the density of Purkinje cells was not significantly reduced in 4 week-old leaner mice, approximately 50% of the neurons was lost by 34 weeks of age. On the other hand, the dystonia and associated functional disability became significantly less severe during this same interval. In other words, dystonia improved as Purkinje cells were lost, suggesting that dysfunctional Purkinje cells, rather than Purkinje cell loss, contribute to the dystonia. These results provide evidence that distorted cerebellar function may cause dystonia and support the concept that different types of cerebellar defects can have different functional consequences.


Assuntos
Doenças Cerebelares/patologia , Distonia/patologia , Células de Purkinje/patologia , Animais , Contagem de Células , Doenças Cerebelares/complicações , Distonia/etiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...