Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Neuroimage ; 283: 120441, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37923282

RESUMO

Responses to potentially dangerous stimuli are among the most basic animal behaviors. While research has shown that threats automatically capture the attention of human participants, research has failed to demonstrate automatic behavioral responses to threats in humans. Using a novel naturalistic paradigm, we show that two species of animals humans often report fearing trigger rapid withdrawal responses: participants withdrew their arm from photos of snakes and spiders faster, and with higher acceleration when compared to bird and butterfly stimuli. The behavior was specific to withdrawal as approach movements or button-press/release tasks failed to detect a similar difference. Moreover, between-participant differences in how aversive they found the stimuli predicted the participant's withdrawal speed, indicating that the paradigm was also sensitive to trait-level differences between individuals. Using electroencephalography (EEG), we show that the fast withdrawal was mediated by two attentional processes. First, fast withdrawal responses were associated with early amplification of sensory signals (40-110 ms after stimulus). Second, a later correlate of feature-based attention (early posterior negativity, EPN, 200-240 ms after stimulus) revealed the opposite pattern: Stronger EPN was associated with slower behavioral responses, suggesting that the deployment of attention towards the threatening stimulus features, or failure to "disengage" attention from the stimulus, was detrimental for withdrawal speed. Altogether, the results suggest that rapid behavioral withdrawal from a threatening animal is mediated by reflex-like attentional processing, and later, conscious attention to stimulus features may hinder escaping the treat.


Assuntos
Eletroencefalografia , Potenciais Evocados , Animais , Humanos , Potenciais Evocados/fisiologia , Medo/fisiologia , Potenciais Evocados Visuais , Reflexo
2.
IEEE J Biomed Health Inform ; 27(8): 3740-3747, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37018586

RESUMO

Early detection is vital for future neuroprotective treatments of Parkinson's disease (PD). Resting state electroencephalographic (EEG) recording has shown potential as a cost-effective means to aid in detection of neurological disorders such as PD. In this study, we investigated how the number and placement of electrodes affects classifying PD patients and healthy controls using machine learning based on EEG sample entropy. We used a custom budget-based search algorithm for selecting optimized sets of channels for classification, and iterated over variable channel budgets to investigate changes in classification performance. Our data consisted of 60-channel EEG collected at three different recording sites, each of which included observations collected both eyes open (total N = 178) and eyes closed (total N = 131). Our results with the data recorded eyes open demonstrated reasonable classification performance (ACC = .76; AUC = .76) with only 5 channels placed far away from each other, the selected regions including right-frontal, left-temporal and midline-occipital sites. Comparison to randomly selected subsets of channels indicated improved classifier performance only with relatively small channel-budgets. The results with the data recorded eyes closed demonstrated consistently worse classification performance (when compared to eyes open data), and classifier performance improved more steadily as a function of number of channels. In summary, our results suggest that a small subset of electrodes of an EEG recording can suffice for detecting PD with a classification performance on par with a full set of electrodes. Furthermore our results demonstrate that separately collected EEG data sets can be used for pooled machine learning based PD detection with reasonable classification performance.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Eletroencefalografia/métodos , Algoritmos , Eletrodos , Máquina de Vetores de Suporte
3.
Neuroscience ; 513: 111-125, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702371

RESUMO

Some patients with a visual field loss due to a lesion in the primary visual cortex (V1) can shift their gaze to stimuli presented in their blind visual field. The extent to which a similar "blindsight" capacity is present in neurologically healthy individuals remains unknown. Using retinotopically navigated transcranial magnetic stimulation (TMS) of V1 (Experiment 1) and metacontrast masking (Experiment 2) to suppress conscious vision, we examined neurologically healthy humans' ability to make saccadic eye movements toward visual targets that they reported not seeing. In the TMS experiment, the participants were more likely to initiate a saccade when a stimulus was presented, and they reported not seeing it, than in trials which no stimulus was presented. However, this happened only in a very small proportion (∼8%) of unseen trials, suggesting that saccadic reactions were largely based on conscious perception. In both experiments, saccade landing location was influenced by unconscious information: When the participants denied seeing the target but made a saccade, the saccade was made toward the correct location (TMS: 68%, metacontrast: 63%) more often than predicted by chance. Signal detection theoretic measures suggested that in the TMS experiment, saccades toward unseen targets may have been based on weak conscious experiences. In both experiments, reduced visibility of the target stimulus was associated with slower and less precise gaze shifts. These results suggest that saccades made by neurologically healthy humans may be influenced by unconscious information, although the initiation of saccades is largely based on conscious vision.


Assuntos
Movimentos Sacádicos , Córtex Visual , Humanos , Córtex Visual/fisiologia , Estado de Consciência/fisiologia , Estimulação Magnética Transcraniana , Visão Ocular , Estimulação Luminosa , Percepção Visual/fisiologia
4.
Front Neurosci ; 16: 868270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655753

RESUMO

Maternal depression symptoms are common in pregnant women and can have negative effects on offspring's emotional development. This study investigated the association between prenatal maternal depression symptoms (assessed with the Edinburgh Postnatal Depression Scale at 24 weeks of gestation) and auditory perception of emotional stimuli in 3-year-olds (n = 58) from the FinnBrain Birth Cohort Study. Using electroencephalography (EEG), we examined mismatch responses for happy, sad, and angry sounds presented among neutral stimuli. A positive association between maternal depression symptoms and the emotional mismatch responses in an early time window (80-120 ms) was found, indicating that brain responses of children of mothers with depressive symptoms were weaker to happy sounds, though the results did not survive Bonferroni correction. There were no clear associations in the sad and angry emotional categories. Our results tentatively support that the 3-year-old children of mothers with depression symptoms may be less sensitive to automatically detect happy sounds compared to children whose mothers do not display symptoms of depression.

5.
Neuropsychologia ; 166: 108154, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35016890

RESUMO

To date, most studies on the event-related potential (ERP) correlates of conscious perception have examined a single perceptual modality. We compared electrophysiological correlates of visual and auditory awareness in the same experiment to test whether there are modality-specific and modality-general correlates of conscious perception. We used near threshold stimulation and analyzed event-related potentials in response to aware and unaware trials in visual, auditory and bimodal conditions. The results showed modality-specific negative amplitude correlates of conscious perception between 200 and 300 ms after stimulus onset. A combination of these auditory and visual awareness negativities was observed in the bimodal condition. A later positive amplitude difference, whose early part was modality-specific, possibly reflecting access to global workspace, and later part shared modality-general features, possibly indicating higher level cognitive processing involving the decision making, was also observed.


Assuntos
Conscientização , Eletroencefalografia , Conscientização/fisiologia , Estado de Consciência/fisiologia , Potenciais Evocados/fisiologia , Humanos , Estimulação Luminosa , Percepção Visual/fisiologia
6.
Conscious Cogn ; 98: 103265, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34971969

RESUMO

The notion that behavioral responses to stimuli can be mediated by separate unconscious and conscious sensory pathways remains popular, but also hotly debated. Recently, Ro and Koenig (2021) reported that when activity in somatosensory cortex was interfered with transcranial magnetic stimulation (TMS), participants could discriminate tactile stimuli they reported not consciously feeling. The study launches an interesting new area of research, helping to uncover mechanisms of unconscious perception that possibly generalize across different sensory modalities. However, we argue here that the study by Ro and Koenig also has several significant shortcomings, and it fails to provide evidence that pathways bypassing primary somatosensory cortex enable unconscious tactile discrimination. By referring to numerous studies investigating TMS-induced blindsight, we outline challenges in demonstrating unconscious sensory pathways using TMS. By facing to these challenges, research investigating TMS-induced numbsense has potential to stimulate progress in stubborn debates and reveal modality-general mechanisms of unconscious perception.


Assuntos
Estimulação Magnética Transcraniana , Córtex Visual , Estado de Consciência/fisiologia , Humanos , Córtex Somatossensorial , Tato , Córtex Visual/fisiologia
7.
Neurobiol Lang (Camb) ; 3(4): 599-614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37215343

RESUMO

Learning to pronounce a foreign phoneme requires an individual to acquire a motor program that enables the reproduction of the new acoustic target sound. This process is largely based on the use of auditory feedback to detect pronunciation errors to adjust vocalization. While early auditory evoked neural activity underlies automatic detection and adaptation to vocalization errors, little is known about the neural correlates of acquiring novel speech targets. To investigate the neural processes that mediate the learning of foreign phoneme pronunciation, we recorded event-related potentials when participants (N = 19) pronounced native or foreign phonemes. Behavioral results indicated that the participants' pronunciation of the foreign phoneme improved during the experiment. Early auditory responses (N1 and P2 waves, approximately 85-290 ms after the sound onset) revealed no differences between foreign and native phonemes. In contrast, the amplitude of the frontocentrally distributed late slow wave (LSW, 320-440 ms) was modulated by the pronunciation of the foreign phonemes, and the effect changed during the experiment, paralleling the improvement in pronunciation. These results suggest that the LSW may reflect higher-order monitoring processes that signal successful pronunciation and help learn novel phonemes.

8.
Neuroscience ; 475: 206-219, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34480985

RESUMO

Patients with blindsight are blind due to an early visual cortical lesion, but they can discriminate stimuli presented to the blind visual field better than chance. Studies using transcranial magnetic stimulation (TMS) of early visual cortex have tried to induce blindsight-like behaviour in neurologically healthy individuals, but the studies have yielded varied results. We hypothesized that previous demonstrations of TMS-induced blindsight may result from degraded awareness of the stimuli due to the use of dichotomous visibility scales in measuring awareness. In the present study, TMS was applied to early visual cortex during an orientation discrimination task and the subjective scale measuring awareness was manipulated: The participants reported their conscious perception either using a dichotomous scale or a 4-point Perceptual Awareness Scale. Although the results with the dichotomous scale replicated previous reports of blindsight-like behaviour, there was no evidence of TMS-induced blindsight for orientation when the participants used the lowest rating of the 4-point graded scale to indicate that they were not aware of the presence of the stimulus. Moreover, signal detection analyses indicated that across participants, the individual's sensitivity to consciously discriminate orientation predicted behaviour on reportedly unconscious trials. These results suggest that blindsight-like discrimination of orientation in neurologically healthy individuals does not occur for completely invisible stimuli, that is, when the observers do not report any kind of consciousness of the stimulus. TMS-induced blindsight for orientation is likely degraded conscious vision.


Assuntos
Estado de Consciência , Córtex Visual , Conscientização , Humanos , Estimulação Luminosa , Estimulação Magnética Transcraniana , Visão Ocular , Campos Visuais , Percepção Visual
9.
Eur J Neurosci ; 54(3): 4985-4999, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34128284

RESUMO

Individuals are able to discriminate visual stimuli they report not consciously seeing. This phenomenon is known as "subliminal perception." Such capacity is often assumed to be relatively automatic in nature and rely on stimulus-driven activity in low-level cortical areas. Instead, here we asked to what extent neural activity before stimulus presentation influences subliminal perception. We asked participants to discriminate the location of a briefly presented low-contrast visual stimulus and then rate how well they saw the stimulus. Consistent with previous studies, participants correctly discriminated with slightly above chance-level accuracy the location of a stimulus they reported not seeing. Signal detection analyses indicated that while subjects categorized their percepts as "unconscious," their capacity to discriminate these stimuli lay on the same continuum as conscious vision. We show that the accuracy of discriminating the location of a subliminal stimulus could be predicted with relatively high accuracy (AUC = 0.70) based on lateralized electroencephalographic (EEG) activity before the stimulus, the hemifield where the stimulus was presented, and the accuracy of previous trial's discrimination response. Altogether, our results suggest that rather than being a separate unconscious capacity, subliminal perception is based on similar processes as conscious vision.


Assuntos
Estimulação Subliminar , Percepção Visual , Estado de Consciência , Eletroencefalografia , Humanos , Estimulação Luminosa , Visão Ocular
10.
Neurosci Biobehav Rev ; 127: 353-364, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33965459

RESUMO

The visual pathways that bypass the primary visual cortex (V1) are often assumed to support visually guided behavior in humans in the absence of conscious vision. This conclusion is largely based on findings on patients: V1 lesions cause blindness but sometimes leave some visually guided behaviors intact-this is known as blindsight. With the aim of examining how well the findings on blindsight patients generalize to neurologically healthy individuals, we review studies which have tried to uncover transcranial magnetic stimulation (TMS) induced blindsight. In general, these studies have failed to demonstrate a completely unconscious blindsight-like capacity in neurologically healthy individuals. A possible exception to this is TMS-induced blindsight of stimulus presence or location. Because blindsight in patients is often associated with some form of introspective access to the visual stimulus, and blindsight may be associated with neural reorganization, we suggest that rather than revealing a dissociation between visually guided behavior and conscious seeing, blindsight may reflect preservation or partial recovery of conscious visual perception after the lesion.


Assuntos
Córtex Visual , Cegueira , Estado de Consciência , Humanos , Estimulação Luminosa , Estimulação Magnética Transcraniana , Vias Visuais , Percepção Visual
11.
Neurosci Conscious ; 2021(1): niab002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747546

RESUMO

Can the brain be shifted into a different state using a simple social cue, as tests on highly hypnotizable subjects would suggest? Demonstrating an altered global brain state is difficult. Brain activation varies greatly during wakefulness and can be voluntarily influenced. We measured the complexity of electrophysiological response to transcranial magnetic stimulation in one 'hypnotic virtuoso'. Such a measure produces a response arguably outside the subject's voluntary control and has been proven adequate for discriminating conscious from unconscious brain states. We show that a single-word hypnotic induction robustly shifted global neural connectivity into a state where activity remained sustained but failed to ignite strong, coherent activity in frontoparietal cortices. Changes in perturbational complexity indicate a similar move towards a more segregated state. We interpret these findings to suggest a shift in the underlying state of the brain, likely moderating subsequent hypnotic responding.

12.
J Int Neuropsychol Soc ; 27(3): 270-281, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32928332

RESUMO

OBJECTIVES: Impairments in visual perception are among the most common developmental difficulties related to being born prematurely, and they are often accompanied by problems in other developmental domains. Neural activation in participants born prematurely and full-term during tasks that assess several areas of visual perception has not been studied. To better understand the neural substrates of the visual perceptual impairments, we compared behavioral performance and brain activations during visual perception tasks in adolescents born very preterm (birth weight ≤1500 g or gestational age <32 weeks) and full-term. METHODS: Tasks assessing visual closure, discrimination of a deviating figure, and discrimination of figure and ground from the Motor-Free Visual Perception Test, Third Edition were performed by participants born very preterm (n = 37) and full-term (n = 34) at 12 years of age during functional magnetic resonance imaging. RESULTS: Behavioral performance in the visual perception tasks did not differ between the groups. However, during the visual closure task, brain activation was significantly stronger in the group born very preterm in a number of areas including the frontal, anterior cingulate, temporal, and posterior medial parietal/cingulate cortices, as well as in parts of the cerebellum, thalamus, and caudate nucleus. CONCLUSIONS: Differing activations during the visual closure task potentially reflect a compensatory neural process related to premature birth or lesser neural efficiency or may be a result of the use of compensatory behavioral strategies in the study group born very preterm.


Assuntos
Nascimento Prematuro , Percepção Visual , Adolescente , Encéfalo/diagnóstico por imagem , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Gravidez
13.
Clin Neurophysiol ; 131(9): 2140-2147, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32682241

RESUMO

OBJECTIVE: Speech deficits are common in Parkinson's disease, and behavioural findings suggest that the deficits may be due to impaired monitoring of self-produced speech. The neural mechanisms of speech deficits are not well understood. We examined a well-documented electrophysiological correlate of speech self-monitoring in patients with Parkinson's disease and control participants. METHODS: We measured evoked electroencephalographic responses to self-produced and passively heard sounds (/a/ phonemes) in age-matched controls (N = 18), and Parkinson's disease patients who had minor speech impairment, but reported subjectively experiencing no speech deficits (N = 17). RESULTS: During speaking, auditory evoked activity 100 ms after phonation (N1 wave) was less suppressed in Parkinson's disease than controls when compared to the activity evoked by passively heard phonemes. This difference between the groups was driven by increased amplitudes to self-produced phonemes, and reduced amplitudes passively heard phonemes in Parkinson's disease. CONCLUSIONS: The finding indicates that auditory evoked activity is abnormally modulated during speech in Parkinson's patients who do not subjectively notice speech impairment. This mechanism could play a role in producing speech deficits in as the disease progresses. SIGNIFICANCE: Our study is the first to show abnormal early auditory electrophysiological correlates of monitoring speech in Parkinson's disease patients.


Assuntos
Córtex Auditivo/fisiopatologia , Potenciais Evocados Auditivos/fisiologia , Doença de Parkinson/fisiopatologia , Distúrbios da Fala/fisiopatologia , Fala/fisiologia , Idoso , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Distúrbios da Fala/etiologia , Percepção da Fala/fisiologia
14.
Sci Rep ; 10(1): 7228, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350333

RESUMO

Poor maternal sleep quality during pregnancy may act as a prenatal stress factor for the fetus and associate with neonate neurocognition, for example via fetal programming. The impacts of worsened maternal sleep on neonatal development and, more specifically on neonatal auditory brain responses, have not been studied. A total of 155 mother-neonate dyads drawn from the FinnBrain Birth Cohort Study participated in our study including maternal self-report questionnaires on sleep at gestational week 24 and an event-related potential (ERP) measurement among 1-2-day-old neonates. For sleep quality assessment, the Basic Nordic Sleep Questionnaire (BNSQ) was used and calculated scores for (1) insomnia, (2) subjective sleep loss and (3) sleepiness were formed and applied in the analyses. In the auditory ERP protocol, three emotionally uttered pseudo words (in happy, angry and sad valence) were presented among neutrally uttered pseudo words. To study the relations between prenatal maternal sleep quality and auditory emotion-related ERP responses, mixed-effects regression models were computed for early (100-200 ms) and late (300-500 ms) ERP response time-windows. All of the selected BNSQ scores were associated with neonatal ERP responses for happy and angry emotion stimuli (sleep loss and sleepiness in the early, and insomnia, sleep loss and sleepiness in the late time-window). For sad stimuli, only maternal sleep loss predicted the neonatal ERP response in the late time-window, likely because the overall ERP was weakest in the sad condition. We conclude that maternal sleep quality during pregnancy is associated with changes in neonatal auditory ERP responses.


Assuntos
Encéfalo/fisiopatologia , Potenciais Evocados , Complicações na Gravidez/fisiopatologia , Distúrbios do Início e da Manutenção do Sono/fisiopatologia , Sono , Inquéritos e Questionários , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez
15.
Neuropsychologia ; 136: 107266, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31758972

RESUMO

Some neurological patients with primary visual cortex (V1) lesions can guide their behavior based on stimuli presented to their blind visual field. One example of this phenomenon is the ability to discriminate colors in the absence of awareness. These so-called patients with blindsight must have a neural pathway that bypasses V1, explaining their ability to unconsciously process stimuli. The pathways that have been most often hypothesized to be the cause of blindsight connect lateral geniculate nucleus (LGN) or superior colliculus (SC) to extrastriate cortex, most likely V5, and parietal areas. To test if similar pathways function in neurologically healthy individuals or if unconscious processing depends on early visual cortex, we disturbed the visibility of a chromatic stimulus with metacontrast masking (Experiment 1) or neuronavigated transcranial magnetic stimulation (TMS) of early visual cortex, exact target being retinotopically mapped V1 (Experiment 2). We measured unconscious processing using the redundant target effect (RTE), which is the speeding up of reaction times in response to dual stimuli compared with one stimulus, when the task is to respond to any number of stimuli. An unconscious chromatic RTE was found when the visibility of the redundant chromatic stimulus was suppressed with a visual mask. When TMS was targeted to the correct retinotopic location of V1, and conscious perception of the redundant chromatic stimulus suppressed, the RTE was eliminated. Whether the elimination of unconscious RTE during TMS was exclusively due to disruption of V1 activity, or whether it was due to the possible interference with processing in V2 or even V3, is discussed. Based on our results and converging evidence from previous studies, we conclude that unconscious processing of chromatic information depends on the early visual cortex, in neurologically healthy participants.


Assuntos
Percepção de Cores/fisiologia , Mascaramento Perceptivo/fisiologia , Estimulação Magnética Transcraniana , Inconsciente Psicológico , Córtex Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Neuronavegação , Adulto Jovem
16.
Conscious Cogn ; 74: 102779, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31295656

RESUMO

The typical empirical approach to studying consciousness holds that we can only observe the neural correlates of experiences, not the experiences themselves. In this paper we argue, in contrast, that experiences are concrete physical phenomena that can causally interact with other phenomena, including observers. Hence, experiences can be observed and scientifically modelled. We propose that the epistemic gap between an experience and a scientific model of its neural mechanisms stems from the fact that the model is merely a theoretical construct based on observations, and distinct from the concrete phenomenon it models, namely the experience itself. In this sense, there is a gap between any natural phenomenon and its scientific model. On this approach, a neuroscientific theory of the constitutive mechanisms of an experience is literally a model of the subjective experience itself. We argue that this metatheoretical framework provides a solid basis for the empirical study of consciousness.


Assuntos
Estado de Consciência , Modelos Teóricos , Neurociências , Filosofia , Fenômenos Físicos , Humanos
17.
Emotion ; 19(2): 348-364, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29578746

RESUMO

The snake detection hypothesis claims that predatory pressure from snakes has shaped the primate visual system, but we still know very little about how the brain processes evolutionarily important visual cues, and which factors are crucial for quick detection of snakes. We investigated how visual features modulate the electrophysiological markers of early attentional processes. In Experiment 1, we compared snake, rope, gun, and bird images to isolate the effects due to curvilinearity of the stimuli. The results showed that both snake and rope images elicited enhanced P1 and N1 event-related potential components as well as early posterior negativity (EPN). In Experiment 2, we studied whether nonthreatening curvilinear images (i.e., ropes) still elicit the enhanced electrophysiological responses when snake images are not presented as stimuli, and therefore the context does not provoke top-down attention to curvilinear shapes. Rope images still evoked an enhanced EPN, suggesting that curvilinear shapes are preferably captured by attentional processes. However, this effect was smaller than in Experiment 1, in which snake images were present. Thus, our results hint to the possibility that the perceptual context may interact with processing of shape information, drawing attention to curvilinear shapes when the presence of snakes is expectable. Furthermore, we observed that spatial frequency of the visual stimuli modulated especially the early electrophysiological responses, and decreased the differences between stimulus categories in EPN without completely eliminating them. The findings suggest that low-level and high-level mechanisms interact to give an attentional priority to potentially threatening stimuli. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Assuntos
Viés de Atenção/fisiologia , Evolução Biológica , Encéfalo/fisiologia , Sinais (Psicologia) , Medo/fisiologia , Serpentes , Adulto , Animais , Aves , Eletrofisiologia , Potenciais Evocados , Feminino , Humanos , Masculino , Estimulação Luminosa , Adulto Jovem
18.
Neuroimage ; 185: 313-321, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30366074

RESUMO

The study of blindsight has revealed a seminal dissociation between conscious vision and visually guided behavior: some patients who are blind due to V1 lesions seem to be able to employ unconscious visual information in their behavior. The standard assumption is that these findings generalize to the neurologically healthy. We tested whether unconscious processing of motion is possible without the contribution of V1 in neurologically healthy participants by disturbing activity in V1 using transcranial magnetic stimulation (TMS). Unconscious processing was measured with redundant target effect (RTE), a phenomenon where participants respond faster to two stimuli than to one stimulus, when the task is just to respond as fast as possible when one stimulus or two simultaneous stimuli are presented. We measured the RTE caused by a motion stimulus. V1 activity was interfered with different stimulus onset asynchronies (SOA) to test whether TMS delivered in a specific time window suppresses conscious perception (participant reports seeing only one of the two stimuli) but does not affect unconscious processing (RTE). We observed that at each SOA, when TMS suppressed conscious perception of the stimulus, the RTE was also eliminated. However, when visibility of the redundant target was suppressed with a visual mask, we found unconscious processing of motion. This suggests that unconscious processing of motion depends on V1 in neurologically healthy humans. We conclude that the neural mechanisms that enable motion processing in blindsight are modulated by neuroplastic changes in connectivity between subcortical areas and the visual cortex after the V1 lesion. Neurologically healthy observers cannot process motion unconsciously without functioning of V1.


Assuntos
Cegueira/fisiopatologia , Percepção de Movimento/fisiologia , Córtex Visual/fisiologia , Adulto , Estado de Consciência/fisiologia , Retroalimentação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Magnética Transcraniana , Inconsciência , Adulto Jovem
19.
PeerJ ; 6: e6038, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30568856

RESUMO

Movement in Parkinson's disease (PD) is fragmented, and the patients depend on visual information in their behavior. This suggests that the patients may have deficits in internally monitoring their own movements. Internal monitoring of movements is assumed to rely on corollary discharge signals that enable the brain to predict the sensory consequences of actions. We studied early-stage PD patients (N = 14), and age-matched healthy control participants (N = 14) to examine whether PD patients reveal deficits in updating their sensory representations after eye movements. The participants performed a double-saccade task where, in order to accurately fixate a second target, the participant must correct for the displacement caused by the first saccade. In line with previous reports, the patients had difficulties in fixating the second target when the eye movement was performed without visual guidance. Furthermore, the patients had difficulties in taking into account the error in the first saccade when making a saccade toward the second target, especially when eye movements were made toward the side with dominant motor symptoms. Across PD patients, the impairments in saccadic eye movements correlated with the integrity of the dopaminergic system as measured with [123I]FP-CIT SPECT: Patients with lower striatal (caudate, anterior putamen, and posterior putamen) dopamine transporter binding made larger errors in saccades. This effect was strongest when patients made memory-guided saccades toward the second target. Our results provide tentative evidence that the motor deficits in PD may be partly due to deficits in internal monitoring of movements.

20.
Sci Rep ; 8(1): 15798, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30361498

RESUMO

Binocular disparity results in a tangible subjective experience of three-dimensional world, but whether disparity also augments objective perceptual performance remains debated. We hypothesized that the improved coding of depth enabled by binocular disparity allows participants to individuate more objects at a glance as the objects can be more efficiently differentiated from each other and the background. We asked participants to enumerate objects in briefly presented naturalistic (Experiment 1) and artificial (Experiment 2) scenes in immersive virtual reality. This type of enumeration task yields well-documented capacity limits where up to 3-4 items can be enumerated rapidly and accurately, known as subitizing. Our results show that although binocular disparity did not yield a large general improvement in enumeration accuracy or reaction times, it improved participants' ability to process the items right after the limit of perceptual capacity. Binocular disparity also sped-up response times by 27 ms on average when artificial stimuli (cubes) were used. Interestingly, the influence of disparity on subjectively experienced depth revealed a clearly different pattern than the influence of disparity on objective performance. This suggests that the functional and subjective sides of stereopsis can be dissociated. Altogether our results suggest that binocular disparity may increase the number of items the visual system can simultaneously process. This may help animals to better resolve and track objects in complex, cluttered visual environments.


Assuntos
Percepção de Profundidade/fisiologia , Disparidade Visual/fisiologia , Visão Binocular/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Estimulação Luminosa , Análise e Desempenho de Tarefas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...