Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; : e17362, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682494

RESUMO

The black abalone, Haliotis cracherodii, is a large, long-lived marine mollusc that inhabits rocky intertidal habitats along the coast of California and Mexico. In 1985, populations were impacted by a bacterial disease known as withering syndrome (WS) that wiped out >90% of individuals, leading to the closure of all U.S. black abalone fisheries since 1993. Current conservation strategies include restoring diminished populations by translocating healthy individuals. However, population collapse on this scale may have dramatically lowered genetic diversity and strengthened geographic differentiation, making translocation-based recovery contentious. Additionally, the current prevalence of WS remains unknown. To address these uncertainties, we sequenced and analysed the genomes of 133 black abalone individuals from across their present range. We observed no spatial genetic structure among black abalone, with the exception of a single chromosomal inversion that increases in frequency with latitude. Outside the inversion, genetic differentiation between sites is minimal and does not scale with either geographic distance or environmental dissimilarity. Genetic diversity appears uniformly high across the range. Demographic inference does indicate a severe population bottleneck beginning just 15 generations in the past, but this decline is short lived, with present-day size far exceeding the pre-bottleneck status quo. Finally, we find the bacterial agent of WS is equally present across the sampled range, but only in 10% of individuals. The lack of population genetic structure, uniform diversity and prevalence of WS bacteria indicates that translocation could be a valid and low-risk means of population restoration for black abalone species' recovery.

2.
bioRxiv ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38352393

RESUMO

The black abalone, Haliotis cracherodii, is a large, long-lived marine mollusc that inhabits rocky intertidal habitats along the coast of California and Mexico. In 1985, populations were impacted by a bacterial disease known as withering syndrome (WS) that wiped out >90% of individuals, leading to the species' designation as critically endangered. Current conservation strategies include restoring diminished populations by translocating healthy individuals. However, population collapse on this scale may have dramatically lowered genetic diversity and strengthened geographic differentiation, making translocation-based recovery contentious. Additionally, the current prevalence of WS is unknown. To address these uncertainties, we sequenced and analyzed the genomes of 133 black abalone individuals from across their present range. We observed no spatial genetic structure among black abalone, with the exception of a single chromosomal inversion that increases in frequency with latitude. Genetic divergence between sites is minimal, and does not scale with either geographic distance or environmental dissimilarity. Genetic diversity appears uniformly high across the range. Despite this, however, demographic inference confirms a severe population bottleneck beginning around the time of WS onset, highlighting the temporal offset that may occur between a population collapse and its potential impact on genetic diversity. Finally, we find the bacterial agent of WS is equally present across the sampled range, but only in 10% of individuals. The lack of genetic structure, uniform diversity, and prevalence of WS bacteria indicates that translocation could be a valid and low-risk means of population restoration for black abalone species' recovery.

3.
Sci Rep ; 13(1): 12046, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491385

RESUMO

The paradigm of past climate-driven range shifts structuring the distribution of marine intraspecific biodiversity lacks replication in biological models exposed to comparable limiting conditions in independent regions. This may lead to confounding effects unlinked to climate drivers. We aim to fill in this gap by asking whether the global distribution of intraspecific biodiversity of giant kelp (Macrocystis pyrifera) is explained by past climate changes occurring across the two hemispheres. We compared the species' population genetic diversity and structure inferred with microsatellite markers, with range shifts and long-term refugial regions predicted with species distribution modelling (SDM) from the last glacial maximum (LGM) to the present. The broad antitropical distribution of Macrocystis pyrifera is composed by six significantly differentiated genetic groups, for which current genetic diversity levels match the expectations of past climate changes. Range shifts from the LGM to the present structured low latitude refugial regions where genetic relics with higher and unique diversity were found (particularly in the Channel Islands of California and in Peru), while post-glacial expansions following ~ 40% range contraction explained extensive regions with homogenous reduced diversity. The estimated effect of past climate-driven range shifts was comparable between hemispheres, largely demonstrating that the distribution of intraspecific marine biodiversity can be structured by comparable evolutionary forces across the global ocean. Additionally, the differentiation and endemicity of regional genetic groups, confers high conservation value to these localized intraspecific biodiversity hotspots of giant kelp forests.


Assuntos
Kelp , Macrocystis , Macrocystis/genética , Ecossistema , Biodiversidade , Florestas , Mudança Climática , Kelp/genética
4.
Glob Chang Biol ; 29(19): 5634-5651, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37439293

RESUMO

Marine protected areas (MPAs) have gained attention as a conservation tool for enhancing ecosystem resilience to climate change. However, empirical evidence explicitly linking MPAs to enhanced ecological resilience is limited and mixed. To better understand whether MPAs can buffer climate impacts, we tested the resistance and recovery of marine communities to the 2014-2016 Northeast Pacific heatwave in the largest scientifically designed MPA network in the world off the coast of California, United States. The network consists of 124 MPAs (48 no-take state marine reserves, and 76 partial-take or special regulation conservation areas) implemented at different times, with full implementation completed in 2012. We compared fish, benthic invertebrate, and macroalgal community structure inside and outside of 13 no-take MPAs across rocky intertidal, kelp forest, shallow reef, and deep reef nearshore habitats in California's Central Coast region from 2007 to 2020. We also explored whether MPA features, including age, size, depth, proportion rock, historic fishing pressure, habitat diversity and richness, connectivity, and fish biomass response ratios (proxy for ecological performance), conferred climate resilience for kelp forest and rocky intertidal habitats spanning 28 MPAs across the full network. Ecological communities dramatically shifted due to the marine heatwave across all four nearshore habitats, and MPAs did not facilitate habitat-wide resistance or recovery. Only in protected rocky intertidal habitats did community structure significantly resist marine heatwave impacts. Community shifts were associated with a pronounced decline in the relative proportion of cold water species and an increase in warm water species. MPA features did not explain resistance or recovery to the marine heatwave. Collectively, our findings suggest that MPAs have limited ability to mitigate the impacts of marine heatwaves on community structure. Given that mechanisms of resilience to climate perturbations are complex, there is a clear need to expand assessments of ecosystem-wide consequences resulting from acute climate-driven perturbations, and the potential role of regulatory protection in mitigating community structure changes.


Assuntos
Ecossistema , Kelp , Animais , Conservação dos Recursos Naturais/métodos , Biomassa , Invertebrados , Florestas , Peixes
5.
J Hered ; 113(6): 665-672, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-35567593

RESUMO

The once abundant black abalone, Haliotis cracherodii, is a large, long-lived grazing marine mollusk that inhabits the rocky intertidal along the coast of California. The species has experienced dramatic declines since the mid-1980s largely due to the fatal bacterial disease called withering syndrome, leading to the collapse of an economically important fishery and to its inclusion into the IUCN listing as a critically endangered species. In some places impacted by the disease, populations of black abalone have declined by more than 90%, prompting population crashes associated with very little recruitment of new individuals and changes to intertidal communities. Habitats that were dominated by crustose coralline algae and bare rock have become dominated instead by fleshy algae and sessile invertebrates. Here, we present the first high-quality black abalone reference genome, assembled with PacBio HiFi long-reads and assembled with Dovetail Omni-C data to generate a scaffold-level assembly. The black abalone reference genome will be an essential resource in understanding the evolutionary history of this species as well as for exploring its current levels of genetic diversity and establishing future management and restoration plans.


Assuntos
Gastrópodes , Humanos , Animais , Gastrópodes/genética , Espécies em Perigo de Extinção , Pesqueiros , Ecossistema
6.
J Anim Ecol ; 90(9): 2077-2093, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34002377

RESUMO

Although long-term ecological stability is often discussed as a community attribute, it is typically investigated at the species level (e.g. density, biomass), or as a univariate metric (e.g. species diversity). To provide a more comprehensive assessment of long-term community stability, we used a multivariate similarity approach that included all species and their relative abundances. We used data from 74 sites sampled annually from 2006 to 2017 to examine broad temporal and spatial patterns of change within rocky intertidal communities along the west coast of North America. We explored relationships between community change (inverse of stability) and the following potential drivers of change/stability: (a) marine heatwave events; (b) three attributes of biodiversity: richness, diversity and evenness and (c) presence of the mussel, Mytilus californianus, a dominant space holder and foundation species in this system. At a broad scale, we found an inverse relationship between community stability and elevated water temperatures. In addition, we found substantial differences in stability among regions, with lower stability in the south, which may provide a glimpse into the patterns expected with a changing climate. At the site level, community stability was linked to high species richness and, perhaps counterintuitively, to low evenness, which could be a consequence of the dominance of mussels in this system. Synthesis. Assessments of long-term stability at the whole-community level are rarely done but are key to a comprehensive understanding of the impacts of climate change. In communities structured around a spatially dominant species, long-term stability can be linked to the stability of this 'foundation species', as well as to traditional predictors, such as species richness.


Assuntos
Bivalves , Ecossistema , Animais , Biodiversidade , Biomassa , América do Norte
7.
Sci Total Environ ; 777: 145962, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33684760

RESUMO

Restoring and protecting "blue carbon" ecosystems - mangrove forests, tidal marshes, and seagrass meadows - are actions considered for increasing global carbon sequestration. To improve understanding of which management actions produce the greatest gains in sequestration, we used a spatially explicit model to compare carbon sequestration and its economic value over a broad spatial scale (2500 km of coastline in southeastern Australia) for four management scenarios: (1) Managed Retreat, (2) Managed Retreat Plus Levee Removal, (3) Erosion of High Risk Areas, (4) Erosion of Moderate to High Risk Areas. We found that carbon sequestration from avoiding erosion-related emissions (abatement) would far exceed sequestration from coastal restoration. If erosion were limited only to the areas with highest erosion risk, sequestration in the non-eroded area exceeded emissions by 4.2 million Mg CO2 by 2100. However, losing blue carbon ecosystems in both moderate and high erosion risk areas would result in net emissions of 23.0 million Mg CO2 by 2100. The removal of levees combined with managed retreat was the strategy that sequestered the most carbon. Across all time points, removal of levees increased sequestration by only an additional 1 to 3% compared to managed retreat alone. Compared to the baseline erosion scenario, the managed retreat scenario increased sequestration by 7.40 million Mg CO2 by 2030, 8.69 million Mg CO2 by 2050, and 16.6 million Mg CO2 by 2100. Associated economic value followed the same patterns, with large potential value loss from erosion greater than potential gains from conserving or restoring ecosystems. This study quantifies the potential benefits of managed retreat and preventing erosion in existing blue carbon ecosystems to help meet climate change mitigation goals by reducing carbon emissions.

8.
PLoS One ; 15(7): e0234075, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32678823

RESUMO

Ocean acidification (OA) represents a serious challenge to marine ecosystems. Laboratory studies addressing OA indicate broadly negative effects for marine organisms, particularly those relying on calcification processes. Growing evidence also suggests OA combined with other environmental stressors may be even more deleterious. Scaling these laboratory studies to ecological performance in the field, where environmental heterogeneity may mediate responses, is a critical next step toward understanding OA impacts on natural communities. We leveraged an upwelling-driven pH mosaic along the California Current System to deconstruct the relative influences of pH, ocean temperature, and food availability on seasonal growth, condition and shell thickness of the ecologically dominant intertidal mussel Mytilus californianus. In 2011 and 2012, ecological performance of adult mussels from local and commonly sourced populations was measured at 8 rocky intertidal sites between central Oregon and southern California. Sites coincided with a large-scale network of intertidal pH sensors, allowing comparisons among pH and other environmental stressors. Adult California mussel growth and size varied latitudinally among sites and inter-annually, and mean shell thickness index and shell weight growth were reduced with low pH. Surprisingly, shell length growth and the ratio of tissue to shell weight were enhanced, not diminished as expected, by low pH. In contrast, and as expected, shell weight growth and shell thickness were both diminished by low pH, consistent with the idea that OA exposure can compromise shell-dependent defenses against predators or wave forces. We also found that adult mussel shell weight growth and relative tissue mass were negatively associated with increased pH variability. Including local pH conditions with previously documented influences of ocean temperature, food availability, aerial exposure, and origin site enhanced the explanatory power of models describing observed performance differences. Responses of local mussel populations differed from those of a common source population suggesting mussel performance partially depended on genetic or persistent phenotypic differences. In light of prior research showing deleterious effects of low pH on larval mussels, our results suggest a life history transition leading to greater resilience in at least some performance metrics to ocean acidification by adult California mussels. Our data also demonstrate "hot" (more extreme) and "cold" (less extreme) spots in both mussel responses and environmental conditions, a pattern that may enable mitigation approaches in response to future changes in climate.


Assuntos
Carbonatos/metabolismo , Mudança Climática , Mytilus/crescimento & desenvolvimento , Oceanos e Mares , Água do Mar/química , Adaptação Fisiológica , Exoesqueleto/química , Animais , Oceano Atlântico , Carbonato de Cálcio/análise , Ecossistema , Concentração de Íons de Hidrogênio , Mytilus/metabolismo , Nutrientes , Tamanho do Órgão , Fitoplâncton , Temperatura , Ondas de Maré
9.
Clin Imaging ; 67: 136-142, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32622334

RESUMO

We report a marked abnormality in myocardial attenuation on non-gated contrast-enhanced CT in a patient with multiorgan sarcoidosis and correlate our findings with CMR, PET and SPECT. The noteworthy observation of myocardial hypoattenuation, in correspondence with the multimodality cardiovascular imaging findings, suggests that standard contrast-enhanced CT may provide information regarding tissue characterization. This report also demonstrates the independent clinical utility of CMR and PET in the evaluation and management of cardiac sarcoidosis.


Assuntos
Cardiomiopatias/diagnóstico por imagem , Sarcoidose/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Miocárdio , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tomografia Computadorizada por Raios X/métodos
10.
Front Microbiol ; 11: 610009, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488550

RESUMO

Sea star wasting (SSW) disease describes a condition affecting asteroids that resulted in significant Northeastern Pacific population decline following a mass mortality event in 2013. The etiology of SSW is unresolved. We hypothesized that SSW is a sequela of microbial organic matter remineralization near respiratory surfaces, one consequence of which may be limited O2 availability at the animal-water interface. Microbial assemblages inhabiting tissues and at the asteroid-water interface bore signatures of copiotroph proliferation before SSW onset, followed by the appearance of putatively facultative and strictly anaerobic taxa at the time of lesion genesis and as animals died. SSW lesions were induced in Pisaster ochraceus by enrichment with a variety of organic matter (OM) sources. These results together illustrate that depleted O2 conditions at the animal-water interface may be established by heterotrophic microbial activity in response to organic matter loading. SSW was also induced by modestly (∼39%) depleted O2 conditions in aquaria, suggesting that small perturbations in dissolved O2 may exacerbate the condition. SSW susceptibility between species was significantly and positively correlated with surface rugosity, a key determinant of diffusive boundary layer thickness. Tissues of SSW-affected individuals collected in 2013-2014 bore δ15N signatures reflecting anaerobic processes, which suggests that this phenomenon may have affected asteroids during mass mortality at the time. The impacts of enhanced microbial activity and subsequent O2 diffusion limitation may be more pronounced under higher temperatures due to lower O2 solubility, in more rugose asteroid species due to restricted hydrodynamic flow, and in larger specimens due to their lower surface area to volume ratios which affects diffusive respiratory potential.

12.
Evolution ; 73(1): 59-72, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30421788

RESUMO

Genome mergers between independently evolving lineages, via allopolyploidy, can potentially lead to instantaneous sympatric speciation. However, little is known about the consequences of allopolyploidy and the resultant "genome shock" on genome evolution and expression beyond the plant and fungal branches of the Tree of Life. The aim of this study was to compare substitution rates and gene expression patterns in two allopolyploid brown algae (Phaeophyceae and Heterokonta) and their progenitors in the genus Pelvetiopsis N. L. Gardner in the north-east Pacific, and to date their relationships. We used RNA-seq data, all potential orthologues, and putative single-copy loci for phylogenomic, divergence, and gene expression analyses. The multispecies coalescent placed the origin of allopolyploids in the late Pleistocene (0.35-0.05 Ma). Homoeologues displayed increased nonsynonymous divergence compared with parental orthologues, consistent with relaxed selective constraint following allopolyploidization, including for genes with no evidence of pseudogenization or neofunctionalization. Patterns of homoeologue-orthologue expression conservation and expression level dominance were largely shared with both natural plant and fungal allopolyploids. Our results provide further support for common cross-Kingdom patterns of allopolyploid genome evolution and transcriptional responses, here in the evolutionarily distinct marine heterokont brown algae.


Assuntos
Evolução Biológica , Phaeophyceae/genética , Poliploidia , Transcrição Gênica , California , Filogenia
13.
Ecol Evol ; 8(8): 3952-3964, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29721271

RESUMO

Disturbances such as disease can reshape communities through interruption of ecological interactions. Changes to population demographics alter how effectively a species performs its ecological role. While a population may recover in density, this may not translate to recovery of ecological function. In 2013, a sea star wasting syndrome outbreak caused mass mortality of the keystone predator Pisaster ochraceus on the North American Pacific coast. We analyzed sea star counts, biomass, size distributions, and recruitment from long-term intertidal monitoring sites from San Diego to Alaska to assess regional trends in sea star recovery following the outbreak. Recruitment, an indicator of population recovery, has been spatially patchy and varied within and among regions of the coast. Despite sea star counts approaching predisease numbers, sea star biomass, a measure of predation potential on the mussel Mytilus californianus, has remained low. This indicates that post-outbreak populations have not regained their full predation pressure. The regional variability in percent of recovering sites suggested differences in factors promoting sea star recovery between regions but did not show consistent patterns in postoutbreak recruitment on a coast-wide scale. These results shape predictions of where changes in community composition are likely to occur in years following the disease outbreak and provide insight into how populations of keystone species resume their ecological roles following mortality-inducing disturbances.

14.
PLoS One ; 13(3): e0192870, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29558484

RESUMO

Disease outbreaks can have substantial impacts on wild populations, but the often patchy or anecdotal evidence of these impacts impedes our ability to understand outbreak dynamics. Recently however, a severe disease outbreak occurred in a group of very well-studied organisms-sea stars along the west coast of North America. We analyzed nearly two decades of data from a coordinated monitoring effort at 88 sites ranging from southern British Columbia to San Diego, California along with 2 sites near Sitka, Alaska to better understand the effects of sea star wasting disease (SSWD) on the keystone intertidal predator, Pisaster ochraceus. Quantitative surveys revealed unprecedented declines of P. ochraceus in 2014 and 2015 across nearly the entire geographic range of the species. The intensity of the impact of SSWD was not uniform across the affected area, with proportionally greater population declines in the southern regions relative to the north. The degree of population decline was unrelated to pre-outbreak P. ochraceus density, although these factors have been linked in other well-documented disease events. While elevated seawater temperatures were not broadly linked to the initial emergence of SSWD, anomalously high seawater temperatures in 2014 and 2015 might have exacerbated the disease's impact. Both before and after the onset of the SSWD outbreak, we documented higher recruitment of P. ochraceus in the north than in the south, and while some juveniles are surviving (as evidenced by transition of recruitment pulses to larger size classes), post-SSWD survivorship is lower than during pre-SSWD periods. In hindsight, our data suggest that the SSWD event defied prediction based on two factors found to be important in other marine disease events, sea water temperature and population density, and illustrate the importance of surveillance of natural populations as one element of an integrated approach to marine disease ecology. Low levels of SSWD-symptomatic sea stars are still present throughout the impacted range, thus the outlook for population recovery is uncertain.


Assuntos
Doenças dos Animais/epidemiologia , Estrelas-do-Mar , Alaska , Animais , Dinâmica Populacional
15.
Proc Biol Sci ; 284(1847)2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28123088

RESUMO

Demographic connectivity is vital to sustaining metapopulations yet often changes dramatically through time due to variation in the production and dispersal of offspring. However, the relative importance of variation in fecundity and dispersal in determining the connectivity and dynamics of metapopulations is poorly understood due to the paucity of comprehensive spatio-temporal data on these processes for most species. We quantified connectivity in metapopulations of a marine foundation species (giant kelp Macrocystis pyrifera) across 11 years and approximately 900 km of coastline by estimating population fecundity with satellite imagery and propagule dispersal using a high-resolution ocean circulation model. By varying the temporal complexity of different connectivity measures and comparing their ability to explain observed extinction-colonization dynamics, we discovered that fluctuations in population fecundity, rather than fluctuations in dispersal, are the dominant driver of variation in connectivity and contribute substantially to metapopulation recovery and persistence. Thus, for species with high variability in reproductive output and modest variability in dispersal (most plants, many animals), connectivity measures ignoring fluctuations in fecundity may overestimate connectivity and likelihoods of persistence, limiting their value for understanding and conserving metapopulations. However, we demonstrate how connectivity measures can be simplified while retaining utility, validating a practical solution for data-limited systems.


Assuntos
Fertilidade , Kelp , Ecossistema , Modelos Biológicos , Dinâmica Populacional
16.
BMC Evol Biol ; 17(1): 30, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28114901

RESUMO

BACKGROUND: Molecular markers are revealing a much more diverse and evolutionarily complex picture of marine biodiversity than previously anticipated. Cryptic and/or endemic marine species are continually being found throughout the world oceans, predominantly in inconspicuous tropical groups but also in larger, canopy-forming taxa from well studied temperate regions. Interspecific hybridization has also been found to be prevalent in many marine groups, for instance within dense congeneric assemblages, with introgressive gene-flow being the most common outcome. Here, using a congeneric phylogeographic approach, we investigated two monotypic and geographically complementary sister genera of north-east Pacific intertidal seaweeds (Hesperophycus and Pelvetiopsis), for which preliminary molecular tests revealed unexpected conflicts consistent with unrecognized cryptic diversity and hybridization. RESULTS: The three recovered mtDNA clades did not match a priori species delimitations. H. californicus was congruent, whereas widespread P. limitata encompassed two additional narrow-endemic species from California - P. arborescens (here genetically confirmed) and P. hybrida sp. nov. The congruence between the genotypic clusters and the mtDNA clades was absolute. Fixed heterozygosity was apparent in a high proportion of loci in P. limitata and P. hybrida, with genetic analyses showing that the latter was composed of both H. californicus and P. arborescens genomes. All four inferred species could be distinguished based on their general morphology. CONCLUSIONS: This study confirmed additional diversity and reticulation within NE Pacific Hesperophycus/Pelvetiopsis, including the validity of the much endangered, modern climatic relict P. arborescens, and the identification of a new, stable allopolyploid species (P. hybrida) with clearly discernable ancestry (♀ H. californicus x ♂ P. arborescens), morphology, and geographical distribution. Allopolyploid speciation is otherwise completely unknown in brown seaweeds, and its unique occurrence within this genus (P. limitata possibly representing a second example) remains enigmatic. The taxonomic separation of Hesperophycus and Pelvetiopsis is not supported and the genera should be synonymized; we retain only the latter. The transitional coastline between Point Conception and Monterey Bay represented a diversity hotspot for the genus and the likely sites of extraordinary evolutionary events of allopolyploid speciation at sympatric range contact zones. This study pinpoints how much diversity (and evolutionary processes) potentially remains undiscovered even on a conspicuous seaweed genus from the well-studied Californian intertidal shores let alone in other, less studied marine groups and regions/depths.


Assuntos
Alga Marinha/genética , Animais , Biodiversidade , Evolução Biológica , California , DNA Mitocondrial/genética , Fluxo Gênico , Oceano Pacífico , Filogenia , Filogeografia , Poliploidia , Alga Marinha/classificação , Análise de Sequência de DNA
17.
Curr Pharm Des ; 23(9): 1406-1423, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27917717

RESUMO

There is an increasing prevalence of cardiovascular diseases that warrant antithrombotic therapy. Antithrombotic therapy includes antiplatelet agents and anticoagulation therapy with vitamin K antagonists (VKAs) or non-Vitamin K oral anticoagulants (NOACs). Antithrombotic therapy is associated with increased rates of bleeding. In this review we summarize the evidence and provide strategies for the management of severe bleeding in the setting of antithrombotic therapy. There is limited data on the management of bleeding in the setting of antiplatelet therapy. We recommend discontinuation of the antiplatelet, as well as administration of platelet transfusions and desmopressin only in the setting of life-threatening bleeding. For patients presenting with severe bleeding in the setting of VKAs, we recommend discontinuation of VKA and prompt administration of 10 mg intravenous vitamin K plus 50 units/kg 4-factor prothrombin complex concentrate (PCC). If 4-factor PCC is not available 3-factor PCC or fresh frozen plasma (FFP) can be used, but these are inferior to 4-factor PCC. For patients presenting with severe bleeding while on dabigatran, we recommend discontinuation of dabigatran and intravenous administration of 5g idarucizumab. There is currently no available reversal agent for factor Xa inhibitors. Andexanet alpha is a factor Xa-specific inhibitor that is currently undergoing FDA review. Until andexanet alpha becomes available we recommend discontinuation of the factor Xa inhibitor and administration of 50 units/kg 4- factor PCC. The decision to discontinue and/or reverse antithrombotic therapy should be made on a case-by-case basis and the competing risk from discontinuation and/or reversal of antithrombotic therapy should be taken into consideration.


Assuntos
Anticoagulantes/uso terapêutico , Hemorragia/tratamento farmacológico , Inibidores da Agregação Plaquetária/uso terapêutico , Administração Oral , Anticoagulantes/administração & dosagem , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/tratamento farmacológico , Hemorragia/complicações , Humanos , Inibidores da Agregação Plaquetária/administração & dosagem
18.
Ecol Lett ; 19(7): 771-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27151381

RESUMO

Although theory suggests geographic variation in species' performance is determined by multiple niche parameters, little consideration has been given to the spatial structure of interacting stressors that may shape local and regional vulnerability to global change. Here, we use spatially explicit mosaics of carbonate chemistry, food availability and temperature spanning 1280 km of coastline to test whether persistent, overlapping environmental mosaics mediate the growth and predation vulnerability of a critical foundation species, the mussel Mytilus californianus. We find growth was highest and predation vulnerability was lowest in dynamic environments with frequent exposure to low pH seawater and consistent food. In contrast, growth was lowest and predation vulnerability highest when exposure to low pH seawater was decoupled from high food availability, or in exceptionally warm locations. These results illustrate how interactions among multiple drivers can cause unexpected, yet persistent geographic mosaics of species performance, interactions and vulnerability to environmental change.


Assuntos
Meio Ambiente , Mytilus/fisiologia , Comportamento Predatório , Animais , California , Concentração de Íons de Hidrogênio , Oregon , Água do Mar/química , Temperatura
19.
Semin Thorac Cardiovasc Surg ; 28(2): 561-568, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28043477

RESUMO

The efficacy of thymectomy and the optimal surgical technique in the treatment of myasthenia gravis (MG) remain controversial. Long-term outcomes are lacking and remission rates are based on small populations. We reviewed our institutional experience of thymectomy for MG focusing on long-term outcomes, complete stable remission (CSR), improvement of symptoms, after transcervical, transsternal, thoracotomy, and VATS thymectomy. A retrospective review of a prospectively maintained database of 3017 patients from 1941-2013 with MG was performed. Patients who underwent thymectomy with follow-up data including age at the time of surgery, sex, date of onset of symptoms, date of surgery, Osserman classification before and after surgery, surgical technique, date of remission, and status at last follow-up were included in the analysis. CSR and prognostic factors were analyzed by crude rate, Kaplan-Meier estimate, chi-squared test, Wilcoxon test, and a Cox proportional model. Overall, 1002 thymectomy patients with complete data were analyzed, and 35.5% (n = 355) derived benefit from surgery. Crude rate CSR was 19% (n = 191) and an additional 16% (n = 164) symptomatically improved requiring less medication after thymectomy. Also, 58% (n = 580) were stable after resection, and 6.7% (n = 67) developed progressive disease. Kaplan-Meier estimates of CSR were 27.7%, 36.7%, and 47.3% at 10, 25, and 40 years, respectively. On multivariate analysis, transsternal technique, thymoma, and preoperative Osserman classification were significantly associated with failure to achieve CSR. Thymectomy provides long-term CSR in 47.3% of patients with long-term follow-up. Patients with MG should be offered thymectomy when possible.


Assuntos
Miastenia Gravis/cirurgia , Cirurgia Torácica Vídeoassistida , Timectomia , Timoma/cirurgia , Neoplasias do Timo/cirurgia , Adulto , Distribuição de Qui-Quadrado , Bases de Dados Factuais , Progressão da Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Miastenia Gravis/diagnóstico , Cidade de Nova Iorque , Modelos de Riscos Proporcionais , Indução de Remissão , Estudos Retrospectivos , Fatores de Risco , Cirurgia Torácica Vídeoassistida/efeitos adversos , Timectomia/efeitos adversos , Timectomia/métodos , Timoma/diagnóstico , Neoplasias do Timo/diagnóstico , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
20.
Mol Ecol ; 24(19): 4866-85, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26339775

RESUMO

At small spatial and temporal scales, genetic differentiation is largely controlled by constraints on gene flow, while genetic diversity across a species' distribution is shaped on longer temporal and spatial scales. We assess the hypothesis that oceanographic transport and other seascape features explain different scales of genetic structure of giant kelp, Macrocystis pyrifera. We followed a hierarchical approach to perform a microsatellite-based analysis of genetic differentiation in Macrocystis across its distribution in the northeast Pacific. We used seascape genetic approaches to identify large-scale biogeographic population clusters and investigate whether they could be explained by oceanographic transport and other environmental drivers. We then modelled population genetic differentiation within clusters as a function of oceanographic transport and other environmental factors. Five geographic clusters were identified: Alaska/Canada, central California, continental Santa Barbara, California Channel Islands and mainland southern California/Baja California peninsula. The strongest break occurred between central and southern California, with mainland Santa Barbara sites forming a transition zone between the two. Breaks between clusters corresponded approximately to previously identified biogeographic breaks, but were not solely explained by oceanographic transport. An isolation-by-environment (IBE) pattern was observed where the northern and southern Channel Islands clustered together, but not with closer mainland sites, despite the greater distance between them. The strongest environmental association with this IBE pattern was observed with light extinction coefficient, which extends suitable habitat to deeper areas. Within clusters, we found support for previous results showing that oceanographic connectivity plays an important role in the population genetic structure of Macrocystis in the Northern hemisphere.


Assuntos
Genética Populacional , Macrocystis/genética , Alaska , California , Canadá , Ecossistema , Fluxo Gênico , Genótipo , México , Repetições de Microssatélites , Modelos Genéticos , Oceano Pacífico , Filogeografia , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...