Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Bioact Mater ; 36: 256-271, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38487704

RESUMO

Recombinant human bone morphogenetic protein-2 (rhBMP-2) has been FDA-approved for lumbar fusion, but supraphysiologic initial burst release due to suboptimal carrier and late excess bone resorption caused by osteoclast activation have limited its clinical usage. One strategy to mitigate the pro-osteoclast side effect of rhBMP-2 is to give systemic bisphosphonates, but it presents challenges with systemic side effects and low local bioavailability. The aim of this in vivo study was to analyze if posterolateral spinal fusion (PLF) could be improved by utilizing a calcium sulfate/hydroxyapatite (CaS/HA) carrier co-delivering rhBMP-2 and zoledronic acid (ZA). Six groups were allocated (CaS/HA, CaS/HA + BMP-2, CaS/HA + systemic ZA, CaS/HA + local ZA, CaS/HA + BMP-2 + systemic ZA, and CaS/HA + BMP-2 + local ZA). 10-week-old male Wistar rats, were randomly assigned to undergo L4-L5 PLF with implantation of group-dependent scaffolds. At 3 and 6 weeks, the animals were euthanized for radiography, µCT, histological staining, or biomechanical testing to evaluate spinal fusion. The results demonstrated that the CaS/HA biomaterial alone or in combination with local or systemic ZA didn't support PLF. However, the delivery of rhBMP-2 significantly promoted PLF. Combining systemic ZA with BMP-2 didn't enhance spinal fusion. Notably, the co-delivery of rhBMP-2 and ZA using the CaS/HA carrier significantly enhanced and accelerated PLF, without inhibiting systemic bone turnover, and potentially reduced the dose of rhBMP-2. Together, the treatment regimen of CaS/HA biomaterial co-delivering rhBMP-2 and ZA could potentially be a safe and cost-effective off-the-shelf bioactive bone substitute to enhance spinal fusion.

2.
Acta Biomater ; 179: 354-370, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490481

RESUMO

Fracture fixation in an ageing population is challenging and fixation failure increases mortality and societal costs. We report a novel fracture fixation treatment by applying a hydroxyapatite (HA) based biomaterial at the bone-implant interface and biologically activating the biomaterial by systemic administration of a bisphosphonate (zoledronic acid, ZA). We first used an animal model of implant integration and applied a calcium sulphate (CaS)/HA biomaterial around a metallic screw in the tibia of osteoporotic rats. Using systemic ZA administration at 2-weeks post-surgery, we demonstrated that the implant surrounded by HA particles showed significantly higher peri­implant bone formation compared to the unaugmented implants at 6-weeks. We then evaluated the optimal timing (day 1, 3, 7 and 14) of ZA administration to achieve a robust effect on peri­implant bone formation. Using fluorescent ZA, we demonstrated that the uptake of ZA in the CaS/HA material was the highest at 3- and 7-days post-implantation and the uptake kinetics had a profound effect on the eventual peri­implant bone formation. We furthered our concept in a feasibility study on trochanteric fracture patients randomized to either CaS/HA augmentation or no augmentation followed by systemic ZA treatment. Radiographically, the CaS/HA group showed signs of increased peri­implant bone formation compared with the controls. Finally, apart from HA, we demonstrated that the concept of biologically activating a ceramic material by ZA could also be applied to ß-tricalcium phosphate. This novel approach for fracture treatment that enhances immediate and long-term fracture fixation in osteoporotic bone could potentially reduce reoperations, morbidity and mortality. STATEMENT OF SIGNIFICANCE: • Fracture fixation in an ageing population is challenging. Biomaterial-based augmentation of fracture fixation devices has been attempted but lack of satisfactory biological response limits their widespread use. • We report the biological activation of locally implanted microparticulate hydroxyapatite (HA) particles placed around an implant by systemic administration of the bisphosphonate zoledronic acid (ZA). The biological activation of HA by ZA enhances peri­implant bone formation. •Timing of ZA administration after HA implantation is critical for optimal ZA uptake and consequently determines the extent of peri­implant bone formation. • We translate the developed concept from small animal models of implant integration to a proof-of-concept clinical study on osteoporotic trochanteric fracture patients. • ZA based biological activation can also be applied to other calcium phosphate biomaterials.


Assuntos
Durapatita , Osteogênese , Ácido Zoledrônico , Animais , Ácido Zoledrônico/farmacologia , Durapatita/química , Durapatita/farmacologia , Feminino , Humanos , Osteogênese/efeitos dos fármacos , Medicina Regenerativa/métodos , Ratos , Ratos Sprague-Dawley , Fixação de Fratura , Idoso , Difosfonatos/farmacologia , Difosfonatos/química , Idoso de 80 Anos ou mais , Masculino
3.
J Orthop Res ; 42(1): 212-222, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37334776

RESUMO

Treatment of chronic osteomyelitis by radical debridement and filling of the dead space with antibiotic containing calcium sulfate/hydroxyapatite (CaS/HA) bone substitute has shown excellent long-term outcomes. However, in extensive infections, sessile bacteria may remain in bone cells or soft tissues protected by biofilm leading to recurrences. The primary aim of this study was to evaluate if systemically administrated tetracycline (TET) could bind to pre-implanted HA particles and impart an antibacterial effect locally. In vitro studies indicated that the binding of TET to nano- and micro-sized HA particles was rapid and plateaued already at 1 h. Since protein passivation of HA after in-vivo implantation could affect HA-TET interaction, we investigated the effect of serum exposure on HA-TET binding in an antibacterial assay. Although, serum exposure reduced the zone of inhibition (ZOI) of Staphylococcus aureus, a significant ZOI could still be observed after pre-incubation of HA with serum. We could in addition show that zoledronic acid (ZA) competes for the same binding sites as TET and that exposure to high doses of ZA led to reduced TET-HA binding. In an in-vivo setting, we then confirmed that systemically administered TET seeks HA particles that were pre-implanted in muscle and subcutaneous pouches in rats and mice respectively, preventing HA particles from being colonized by S. aureus. Clinical Significance: This study describes a new drug delivery method that could prevent bacterial colonization of a HA biomaterial and reduce recurrences in bone infection.


Assuntos
Antibacterianos , Osteomielite , Ratos , Camundongos , Animais , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Durapatita/farmacologia , Staphylococcus aureus , Tetraciclina , Ácido Zoledrônico/uso terapêutico , Osteomielite/tratamento farmacológico , Osteomielite/prevenção & controle
4.
Adv Healthc Mater ; 12(31): e2300987, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37689972

RESUMO

Surgical site infections (SSI) are a clinical and economic burden. Suture-associated SSI may develop when bacteria colonize the suture surface and form biofilms that are resistant to antibiotics. Thrombin-derived C-terminal peptide (TCP)-25 is a host defense peptide with a unique dual mode of action that can target both bacteria and the excessive inflammation induced by bacterial products. The peptide demonstrates therapeutic potential in preclinical in vivo wound infection models. In this study, the authors set out to explore whether TCP-25 can provide a new bioactive innate immune feature to hydrophilic polyglactin sutures (Vicryl). Using a combination of biochemical, biophysical, antibacterial, biofilm, and anti-inflammatory assays in vitro, in silico molecular modeling studies, along with experimental infection and inflammation models in mice, a proof-of-concept that TCP-25 can provide Vicryl sutures with a previously undisclosed host defense capacity, that enables targeting of bacteria, biofilms, and the accompanying inflammatory response, is shown.


Assuntos
Infecções Bacterianas , Poliglactina 910 , Humanos , Camundongos , Animais , Poliglactina 910/uso terapêutico , Suturas , Inflamação/tratamento farmacológico , Infecção da Ferida Cirúrgica/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Peptídeos
5.
Acta Biomater ; 167: 135-146, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37369267

RESUMO

Bone mineralization involves a complex orchestration of physico-chemical responses from the organism. Despite extensive studies, the detailed mechanisms of mineralization remain to be elucidated. This study aims to characterize bone mineralization using an in-vivo long bone fracture healing model in the rat. The spatio-temporal distribution of relevant elements was correlated to the deposition and maturation of hydroxyapatite and the presence of matrix remodeling compounds (MMP-13). Multi-scale measurements indicated that (i) zinc is required for both the initial mineral deposition and resorption processes during mature mineral remodeling; (ii) Zinc and MMP-13 show similar spatio-temporal trends during early mineralization; (iii) Iron acts locally and in coordination with zinc during mineralization, thus indicating novel evidence of the time-events and inter-play between the elements. These findings improve the understanding of bone mineralization by explaining the link between the different constituents of this process throughout the healing time. STATEMENT OF SIGNIFICANCE: Bone mineralization involves a complex orchestration of physico-chemical responses from the organism, the detailed mechanisms of which remain to be elucidated. This study presents a highly novel multi-scale multi-modal investigation of bone mineralization using bone fracture healing as a model system. We present original characterization of tissue mineralization, where we relate the spatio-temporal distribution of important trace elements to a key matrix remodeling compound (MMP-13), the initial deposition and maturation of hydroxyapatite and further remodeling processes. This is the first time that mineralization has been probed down to the nanometric level, and where key mineralization components have been investigated to achieve a comprehensive and mechanistic understanding of the underlying mineralization processes during bone healing.


Assuntos
Consolidação da Fratura , Minerais , Ratos , Animais , Metaloproteinase 13 da Matriz , Zinco , Hidroxiapatitas
6.
Acta Biomater ; 162: 164-181, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36967054

RESUMO

Despite the glimmer of hope provided by the discovery and commercialization of bone morphogenetic protein-2 (BMP-2) as a bone graft substitute, side effects related to the use of supraphysiological doses have hindered its clinical usage. In this study, we compared the osteoinductive potential of BMP-2 homodimer with a heterodimer of BMP-2/7, both delivered via a collagen-hydroxyapatite (CHA) scaffold delivery system, with the aim to reduce the overall therapeutic BMP doses and the associated side-effects. We first show that the incorporation of hydroxyapatite in collagen-based BMP delivery systems is pivotal for achieving efficient BMP sequestration and controlled release. Using an ectopic implantation model, we then showed that the CHA+BMP-2/7 was more osteoinductive than CHA+BMP-2. Further evaluation of the molecular mechanisms responsible for this increased osteoinductivity at an early stage in the regeneration process indicated that the CHA+BMP-2/7 enhanced progenitor cell homing at the implantation site, upregulated the key transcriptomic determinants of bone formation, and increased the production of bone extracellular matrix components. Using fluorescently labelled BMP-2/7 and BMP-2, we demonstrated that the CHA scaffold provided a long-term delivery of both molecules for at least 20 days. Finally, using a rat femoral defect model, we showed that an ultra-low dose (0.5 µg) of BMP-2/7 accelerated fracture healing and performed at a level comparable to 20-times higher BMP-2 dose. Our results indicate that the sustained delivery of BMP-2/7 via a CHA scaffold could bring us a step closer in the quest for the use of physiological growth factor doses in fracture healing. STATEMENT OF SIGNIFICANCE: • Incorporation of hydroxyapatite (HA) in a collagen scaffold dramatically improves bone morphogenic protein (BMP) sequestration via biophysical interactions with BMP, thereby providing more controlled BMP release compared with pristine collagen. • We then investigate the molecular mechanisms responsible for increased osteoinductive potential of a heterodimer BMP-2/7 with is clinically used counterpart, the BMP-2 homodimer. • The superior osteoinductive properties of BMP-2/7 are a consequence of its direct positive effect on progenitor cell homing at the implantation site, which consequently leads to upregulation of cartilage and bone related genes and biochemical markers. • An ultra-low dose of BMP-2/7 delivered via a collagen-HA (CHA) scaffold leads to accelerated healing of a critical femoral defect in rats while a 20-times higher BMP-2 dose was required to achieve comparable results.


Assuntos
Substitutos Ósseos , Durapatita , Ratos , Animais , Durapatita/farmacologia , Colágeno/farmacologia , Colágeno/química , Osteogênese , Osso e Ossos , Consolidação da Fratura , Substitutos Ósseos/farmacologia , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/química , Regeneração Óssea
7.
J Bone Jt Infect ; 8(1): 19-28, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36687463

RESUMO

Introduction: biomaterials combined with antibiotics are routinely used for the management of bone infections. After eluting high concentrations of antibiotics during the first week, sub-inhibitory concentrations of antibiotics may lead to late repopulation of recalcitrant bacteria. Recent studies have shown that systemically given antibiotics like tetracycline and rifampicin (RIF) could seek and bind to locally implanted hydroxyapatite (HA). The aim of this in vivo study was to test if systemically administered rifampicin could replenish HA-based biomaterials with or without prior antibiotic loading to protect the material from late bacterial repopulation. Methods: in vivo accretion of systemically administered RIF to three different types of HA-based materials was tested. In group 1, nano (n)- and micro (m)-sized HA particles were used, while group 2 consisted of a calcium sulfate / hydroxyapatite (CaS / HA) biomaterial without preloaded antibiotics gentamycin (GEN) or vancomycin (VAN), and in group 3, the CaS / HA material contained GEN (CaS / HA + GEN) or VAN (CaS / HA + VAN). The above materials were implanted in an abdominal muscle pouch model in rats, and at 7 d post-surgery, the animals were assigned to a control group (i.e., no systemic antibiotic) and a test group (i.e., animals receiving one single intraperitoneal injection of RIF each day (4 mg per rat) for 3 consecutive days). Twenty-four hours after the third injection, the animals were sacrificed and the implanted pellets were retrieved and tested against Staphylococcus aureus ATCC 25923 in an agar diffusion assay. After overnight incubation, the zone of inhibition (ZOI) around the pellets were measured. Results: in the control group, 2 / 6 CaS / HA + GEN pellets had a ZOI, while all other harvested pellets had no ZOI. No pellets from animals in test group 1 had a ZOI. In test group 2, 10 / 10 CaS / HA pellets showed a ZOI. In test group 3, 5 / 6 CaS / HA + GEN and 4 / 6 CaS / HA + VAN pellets showed a ZOI. Conclusions: in this proof-of-concept study, we have shown that a locally implanted biphasic CaS / HA carrier after 1 week can be loaded by systemic RIF administration and exert an antibacterial effect. Further in vivo infection models are necessary to validate our findings.

8.
J Orthop Surg Res ; 17(1): 292, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35658909

RESUMO

BACKGROUND: The treatments for trochanteric fractures try to regain early mobility and limit morbidity and risk of reoperations. The most currently used dynamic hip screw (DHS) and the proximal femoral nail (PFN) are both with pros and cons. We aimed to assess the comparative effectiveness of these interventions for trochanteric fractures by evaluating the surgical performance and postoperative outcomes. METHODS: PubMed, Web of Science and Cochrane Central Register were searched for RCTs comparing DHS and PFN for trochanteric fractures. All selected studies and the risk of bias were assessed. Clinical data including operative time, intraoperative blood loss, intraoperative fluoroscopy time, successful closed reduction and complications like nonunion, implant failure and reoperation were recorded. Random-effects models were used in Review Manager software, and GRADE was applied for the interpretation of the evidence. RESULTS: From 286 identified trials, twelve RCTs including 1889 patients were eligible for inclusion; six RCTs directly comparing DHS with PFN, while other six compared DHS with proximal femoral nail antirotation (PFNA). Compared to DHS, PFN had shorter operative time and led to less intraoperative blood loss. However, DHS need less intraoperative fluoroscopy time than PFN. No difference was seen for the achievement of closed reduction. For risk of postoperative complications, no difference was seen between PFN and DHS for non-union, risk of implant failure and revision surgery. CONCLUSIONS: PFN(A) resulted in a shorter operative time and less intraoperative blood loss compared to DHS. However, no difference was seen for postoperative complications. Trial registration PROSPERO: CRD42021239974.


Assuntos
Fixação Intramedular de Fraturas , Fraturas do Quadril , Perda Sanguínea Cirúrgica/prevenção & controle , Pinos Ortopédicos , Parafusos Ósseos , Pesquisa Comparativa da Efetividade , Fixação Interna de Fraturas/métodos , Fixação Intramedular de Fraturas/métodos , Fraturas do Quadril/cirurgia , Humanos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
9.
J Mech Behav Biomed Mater ; 130: 105201, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35385809

RESUMO

Calcium sulfate/hydroxyapatite (CaS/HA) biomaterials have been investigated for use in several orthopedic applications. However, the mechanical interactions between the composite of CaS/HA and bone at the microscale are still unknown. The aim of this study was to determine if and how augmentation with CaS/HA alters the fracture behavior of bone. Eleven cylinders of trabecular bone were drilled from human femoral heads and cleaned from bone marrow. Among them, five cylinders were injected with CaS/HA to generate composite specimens, while the others were kept intact. One extra specimen of pure CaS/HA was prepared. All specimens were compressed in situ using synchrotron X-ray tomography and imaged at ∼2% strain intervals. Structural properties were calculated from the images in unloaded state and mechanical properties were determined from the load-curves. CaS/HA alone displayed the highest peak force and stiffness and the lowest strain at fracture. All composite specimens had a higher peak force than the pure bone specimens and the composite specimens had higher toughness than the pure CaS/HA specimen. Furthermore, the fracture behavior was analyzed further to characterize the local deformations. The pure bone specimens presented damage in multiple trabeculae and the CaS/HA specimen displayed sharp transition in strains, with low strain in one load step and large cracks in the next. The composite specimens deformed uniformly, with the CaS/HA preventing tissue damage and the bone preventing cracks in the CaS/HA from propagating through the specimen. In conclusion, using tomography with in situ loading, it was possible to show how CaS/HA can help prevent bone tissue damage before global failure.


Assuntos
Durapatita , Fraturas Ósseas , Materiais Biocompatíveis , Osso e Ossos , Sulfato de Cálcio , Durapatita/química , Fraturas Ósseas/diagnóstico por imagem , Humanos , Sulfatos
10.
Front Bioeng Biotechnol ; 10: 816250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309986

RESUMO

Pertrochanteric fractures (TF) due to osteoporosis constitute nearly half of all proximal femur fractures. TFs are treated with a surgical approach and fracture fixation is achieved using metallic fixation devices. Poor quality cancellous bone in osteoporotic patients makes anchorage of a fixation device challenging, which can lead to failure of the fracture fixation. Methods to reinforce the bone-implant interface using bone cement (PMMA) and other calcium phosphate cements in TFs have been described earlier but a clear evidence on the advantage of using such biomaterials for augmentation is weak. Furthermore, there is no standardized technique for delivering these biomaterials at the bone-implant interface. In this study, we firstly describe a method to deliver a calcium sulphate/hydroxyapatite (CaS/HA) based biomaterial for the augmentation of a lag-screw commonly used for TF fixation. We then used an osteoporotic Sawbones model to study the consequence of CaS/HA augmentation on the immediate mechanical anchorage of the lag-screw to osteoporotic bone. Finally, as a proof-of-concept, the method of delivering the CaS/HA biomaterial at the bone-implant interface as well as spreading of the CaS/HA material at this interface was tested in patients undergoing treatment for TF as well as in donated femoral heads. The mechanical testing results indicated that the CaS/HA based biomaterial increased the peak extraction force of the lag-screw by 4 times compared with un-augmented lag-screws and the results were at par with PMMA. The X-ray images from the patient series showed that it was possible to inject the CaS/HA material at the bone-implant interface without applying additional pressure and the CaS/HA material spreading was observed at the interface of the lag-screw threads and the bone. Finally, the spreading of the CaS/HA material was also verified on donated femoral heads and micro-CT imaging indicated that the entire length of the lag-screw threads was covered with the CaS/HA biomaterial. In conclusion, we present a novel method for augmenting a lag-screw in TFs, which could potentially reduce the risk of fracture fixation failure and reoperation in fragile osteoporotic patients.

11.
Mater Today Bio ; 14: 100227, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35265825

RESUMO

Efficient systemic pharmacological treatment of solid tumors is hampered by inadequate tumor concentration of cytostatics necessitating development of smart local drug delivery systems. To overcome this, we demonstrate that doxorubicin (DOX), a cornerstone drug used for osteosarcoma treatment, shows reversible accretion to hydroxyapatite (HA) of both nano (nHA) and micro (mHA) size. nHA particles functionalized with DOX get engulfed in the lysosome of osteosarcoma cells where the acidic microenvironment causes a disruption of the binding between DOX and HA. The released DOX then accumulates in the mitochondria causing cell starvation, reduced migration and apoptosis. The HA+DOX delivery system was also tested in-vivo on osteosarcoma bearing mice. Locally delivered DOX via the HA particles had a stronger tumor eradication effect compared to the controls as seen by PET-CT and immunohistochemical staining of proliferation and apoptosis markers. These results indicate that in addition to systemic chemotherapy, an adjuvant nHA could be used as a carrier for intracellular delivery of DOX for prevention of tumor recurrence after surgical resection in an osteosarcoma. Furthermore, we demonstrate that nHA particles are pivotal in this approach but a combination of nHA with mHA could increase the safety associated with particulate nanomaterials while maintaining similar therapeutic potential.

12.
Front Bioeng Biotechnol ; 10: 1076320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601389

RESUMO

Hydroxyapatite (HA) has been widely used as a bone substitute and more recently as a carrier for local delivery of bone targeted drugs. Majority of the approved HA based biomaterials and drug carriers comprise of micrometer sized particulate HA (mHA) or granules and can therefore only be used for extracellular drug release. This shortcoming could be overcome with the use of cell penetrating HA nanoparticles (nHA) but a major concern with the clinical use of nHA is the lack of data on its in vivo biodistribution after implantation. In this study, we aimed to study the in vivo biodistribution of locally implanted nHA in a clinically relevant tibial void in rats and compare it with mHA or a combination of mHA and nHA. To enable in vivo tracking, HA particles were first labelled with 14C-zoledronic acid (14C-ZA), known to have a high binding affinity to HA. The labelled particles were then implanted in the animals and the radioactivity in the proximal tibia and vital organs was detected at various time points (Day 1, 7 and 28) post-implantation using scintillation counting. The local distribution of the particles in the bone was studied with micro-CT. We found that majority (>99.9%) of the implanted HA particles, irrespective of the size, stayed locally at the implantation site even after 28 days and the findings were confirmed using micro-CT. Less than 0.1% radioactivity was observed in the kidney and the spleen at later time points of day 7 and 28. No pathological changes in any of the vital organs could be observed histologically. This is the first longitudinal in vivo HA biodistribution study showing that the local implantation of nHA particles in bone is safe and that nHA could potentially be used for localized drug delivery.

13.
Jt Dis Relat Surg ; 32(3): 583-589, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34842088

RESUMO

OBJECTIVES: In this study, we aimed to assess the stratification ability of the Fracture and Mortality Risk Evaluation (FAME) index for reoperation, new fragility fracture, and mortality during one-year follow-up. PATIENTS AND METHODS: Between November 2018 and July 2019, a total of 94 consecutive hip fragility fracture patients from two centers (20 males, 74 females; mean age: 79.3±8.9 years; range, 57 to 100 years) were retrospectively analyzed. The patients were classified into high, intermediate, and low fracture and mortality risk groups according to the Fracture Risk Assessment Tool (FRAX) score and Sernbo score, respectively, as well as nine combined categories according to the FAME index. Hospital records were reviewed to identify re-fractures (reoperations, implant failure, new fragility fractures on any site) and mortality at one year following the FAME index classification. RESULTS: Overall re-fracture and mortality rates were 20.2% and 33%, respectively. High fracture risk category (FRAX-H) was significantly associated with higher re-fracture (odds ratio [OR]: 2.9, 95% confidence interval [CI]: 1-8.2, p=0.037) and mortality rates compared to others (OR: 3.7, 95% CI: 1.5-9.3, p=0.003). The patients classified within the FRAX-H category (n=35) had different mortality rates according to their Sernbo classification; i.e., patients classified as low mortality risk (Sernbo-L) (n=17) had lower mortality rates compared to others in this group (n=18) (35.3% and 66.7%, respectively), indicating a low statistical significance (OR: 0.3, 95% CI: 0.1-1.1, p=0.063). Similarly, within patients classified in Sernbo-L category (n=64), those classified as high fracture risk (FRAX-H) (n=17) had significantly higher re-fracture rates compared to others in this group (n=47) (35.3% and 8.5%, respectively), (OR: 5.9; 95% CI: 1.4-24.5), (p=0.017). Multivariate logistic regression analyses adjusting for covariates (age, sex, length of hospital stay and BMI) yielded similar results. CONCLUSION: The FAME index appears to be a useful stratification tool for allocating patients in a randomized-controlled trial for augmentation of hip fragility fractures.


Assuntos
Fraturas do Quadril , Idoso , Idoso de 80 Anos ou mais , Feminino , Fraturas do Quadril/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco
14.
Adv Mater ; 33(43): e2103737, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34486186

RESUMO

Design criteria for tissue-engineered materials in regenerative medicine include robust biological effectiveness, off-the-shelf availability, and scalable manufacturing under standardized conditions. For bone repair, existing strategies rely on primary autologous cells, associated with unpredictable performance, limited availability and complex logistic. Here, a conceptual shift based on the manufacturing of devitalized human hypertrophic cartilage (HyC), as cell-free material inducing bone formation by recapitulating the developmental process of endochondral ossification, is reported. The strategy relies on a customized human mesenchymal line expressing bone morphogenetic protein-2 (BMP-2), critically required for robust chondrogenesis and concomitant extracellular matrix (ECM) enrichment. Following apoptosis-driven devitalization, lyophilization, and storage, the resulting off-the-shelf cartilage tissue exhibits unprecedented osteoinductive properties, unmatched by synthetic delivery of BMP-2 or by living engineered grafts. Scalability and pre-clinical efficacy are demonstrated by bioreactor-based production and subsequent orthotopic assessment. The findings exemplify the broader paradigm of programming human cell lines as biological factory units to engineer customized ECMs, designed to activate specific regenerative processes.


Assuntos
Osteogênese
15.
Acta Biomater ; 131: 555-571, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34271171

RESUMO

Doxorubicin (DOX) is a cornerstone drug in the treatment of osteosarcoma. However, achieving sufficient concentration in the tumor tissue after systemic administration with few side effects has been a challenge. Even with the most advanced nanotechnology approaches, less than 5% of the total administered drug gets delivered to the target site. Alternatives to increase the local concentration of DOX within the tumor using improved drug delivery methods are needed. In this study, we evaluate a clinically approved calcium sulfate/hydroxyapatite (CaS/HA) carrier, both in-vitro and in-vivo, for local, sustained and controlled delivery of DOX to improve osteosarcoma treatment. In-vitro drug release studies indicated that nearly 28% and 36% of the loaded drug was released over a period of 4-weeks at physiological pH (7.4) and acidic pH (5), respectively. About 63% of the drug had been released after 4-weeks in-vivo. The efficacy of the released drug from the CaS/HA material was verified on two human osteosarcoma cell lines MG-63 and 143B. It was demonstrated that the released drug fractions functioned the same way as the free drug without impacting its efficacy. Finally, the carrier system with DOX was assessed using two clinically relevant human osteosarcoma xenograft models. Compared to no treatment or the clinical standard of care with systemic DOX administration, the delivery of DOX using a CaS/HA biomaterial could significantly hinder tumor progression by inhibiting angiogenesis and cell proliferation. Our results indicate that a clinically approved CaS/HA biomaterial containing cytostatics could potentially be used for the local treatment of osteosarcoma. STATEMENT OF SIGNIFICANCE: The triad of doxorubicin (DOX), methotrexate and cisplatin has routinely been used for the treatment of osteosarcoma. These drugs dramatically improved the prognosis, but 45-55% of the patients respond poorly to the treatment with low 5-year survival. In the present study, we repurpose the cornerstone drug DOX by embedding it in a calcium sulfate/hydroxyapatite (CaS/HA) biomaterial, ensuring a spatio-temporal drug release and a hypothetically higher and longer lasting intra-tumoral concentration of DOX. This delivery system could dramatically hinder the progression of a highly aggressive osteosarcoma compared to systemic administration, by inhibiting angiogenesis and cell proliferation. Our data show an efficient method for supplementary osteosarcoma treatment with possible rapid translational potential due to clinically approved constituents.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Durapatita/uso terapêutico , Humanos , Osteossarcoma/tratamento farmacológico
16.
Med Eng Phys ; 92: 102-109, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34167704

RESUMO

Internal fixation failure in hip fractures can lead to reoperation. Calcium sulfate/hydroxyapatite (CaS/HA) is a biomaterial that can be used for augmenting fracture fixation. We aimed to determine whether an injection of 2 ml CaS/HA increases the fixation of a dynamic hip screw inserted in synthetic and human trabecular bone. The study consists of two parts: 1) synthetic bone blocks (n = 74), with three subgroups: empty (cannulated screw, no injection), cannulated, and fenestrated; and 2) osteoporotic human femoral heads (n = 29), with the same subgroups. The heads were imaged using µCT. Bone volume fraction, insertion angle, and head diameter were measured. Pullout tests were performed and peak force, stiffness, and work were measured. The fenestrated group showed increases in pullout strength compared to no injection in the synthetic blocks. The cannulated group showed a higher pullout strength in low-density blocks. In the femoral heads, the variation was larger and there were no significant differences between groups. The bone volume fraction correlated with the peak force and work, and the insertion angle correlated with the stiffness. CaS/HA can improve the fixation of a dynamic hip screw. For clinical use, spreading of the material around the threads of the screw must be ensured.


Assuntos
Materiais Biocompatíveis , Sulfato de Cálcio , Fenômenos Biomecânicos , Cimentos Ósseos , Parafusos Ósseos , Durapatita , Humanos
17.
Phys Med Biol ; 66(13)2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34010812

RESUMO

The bone tissue formed at the contact interface with metallic implants, particularly its 3D microstructure, plays a pivotal role for the structural integrity of implant fixation. X-ray tomography is the classical imaging technique used for accessing microstructural information from bone tissue. However, neutron tomography has shown promise for visualising the immediate bone-metal implant interface, something which is highly challenging with x-rays due to large differences in attenuation between metal and biological tissue causing image artefacts. To highlight and explore the complementary nature of neutron and x-ray tomography, proximal rat tibiae with titanium-based implants were imaged with both modalities. The two techniques were compared in terms of visualisation of different material phases and by comparing the properties of the individual images, such as the contrast-to-noise ratio. After superimposing the images using a dedicated image registration algorithm, the complementarity was further investigated via analysis of the dual modality histogram, joining the neutron and x-ray data. From these joint histograms, peaks with well-defined grey value intervals corresponding to the different material phases observed in the specimens were identified and compared. The results highlight differences in how neutrons and x-rays interact with biological tissues and metallic implants, as well as the benefits of combining both modalities. Future refinement of the joint histogram analysis could improve the segmentation of structures and tissues, and yield novel information about specimen-specific properties such as moisture content.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Animais , Osso e Ossos/diagnóstico por imagem , Metais , Nêutrons , Ratos
18.
Biomacromolecules ; 22(5): 2256-2271, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33900740

RESUMO

Most macromolecular antimicrobials are ionic and thus lack miscibility/compatibility with nonionic substrate materials. In this context, nonionic hyperbranched polyesters (HBPs) with indole or isatin functionality were rationally designed, synthesized, and characterized. Antimicrobial disk diffusion assay indicated that these HBPs showed significant antibacterial activity against 8 human pathogenic bacteria compared to small molecules with indole or isatin groups. According to DSC measurements, up to 20% indole-based HBP is miscible with biodegradable polyesters (polyhydroxybutyrate or polycaprolactone), which can be attributed to the favorable hydrogen bonding between the N-H moiety of indole and the C═O of polyesters. HBPs with isatin or methylindole were completely immiscible with the same matrices. None of the HBPs leaked out from plastic matrix after being immersed in water for 5 days. The incorporation of indole into HBPs as well as small molecules facilitated their enzymatic degradation with PETase from Ideonella sakaiensis, while isatin had a complex impact. Molecular docking simulations of monomeric molecules with PETase revealed different orientations of the molecules at the active site due to the presence of indole or isatin groups, which could be related to the observed different enzymatic degradation behavior. Finally, biocompatibility analysis with a mammalian cell line showed the negligible cytotoxic effect of the fabricated HBPs.


Assuntos
Isatina , Animais , Antibacterianos , Burkholderiales , Humanos , Indóis , Isatina/farmacologia , Simulação de Acoplamento Molecular , Poliésteres , Polímeros
19.
Sci Adv ; 6(48)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33246951

RESUMO

Bone morphogenic proteins (BMPs) are the only true osteoinductive molecules. Despite being tremendously potent, their clinical use has been limited for reasons including supraphysiological doses, suboptimal delivery systems, and the pro-osteoclast effect of BMPs. Efforts to achieve spatially controlled bone formation using BMPs are being made. We demonstrate that a carrier consisting of a powder of calcium sulfate/hydroxyapatite (CaS/HA) mixed with bone active molecules provides an efficient drug delivery platform for critical femoral defect healing in rats. The bone-active molecules were composed of osteoinductive rhBMP-2 and the bisphosphonate, and zoledronic acid (ZA) was chosen to overcome BMP-2-induced bone resorption. It was demonstrated that delivery of rhBMP-2 was necessary for critical defect healing and restoration of mechanical properties, but codelivery of BMP-2 and ZA led to denser and stronger fracture calluses. Together, the CaS/HA biomaterial with rhBMP-2 and/or ZA can potentially be used as an off-the-shelf alternative to autograft bone.


Assuntos
Materiais Biocompatíveis , Durapatita , Animais , Materiais Biocompatíveis/farmacologia , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/uso terapêutico , Sulfato de Cálcio/farmacologia , Durapatita/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Sulfatos , Ácido Zoledrônico/farmacologia
20.
Sci Rep ; 10(1): 14128, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32839480

RESUMO

Long term multiple systemic antibiotics form the cornerstone in the treatment of bone and joint tuberculosis, often combined with local surgical eradication. Implanted carriers for local drug delivery have recently been introduced to overcome some of the limitations associated with conventional treatment strategies. In this study, we used a calcium sulphate hemihydrate (CSH)/nanohydroxyapatite (nHAP) based nanocement (NC) biomaterial as a void filler as well as a local delivery carrier of two standard of care tuberculosis drugs, Rifampicin (RFP) and Isoniazid (INH). We observed that the antibiotics showed different release patterns where INH showed a burst release of 67% and 100% release alone and in combination within one week, respectively whereas RFP showed sustained release of 42% and 49% release alone and in combination over a period of 12 weeks, respectively indicating different possible interactions of antibiotics with nHAP. The interactions were studied using computational methodology, which showed that the binding energy of nHAP with RFP was 148 kcal/mol and INH was 11 kcal/mol, thus varying substantially resulting in RFP being retained in the nHAP matrix. Our findings suggest that a biphasic ceramic based drug delivery system could be a promising treatment alternative to bone and joint TB.


Assuntos
Antituberculosos/farmacologia , Sulfato de Cálcio/farmacologia , Portadores de Fármacos/farmacologia , Durapatita/farmacologia , Isoniazida/farmacologia , Rifampina/farmacologia , Tuberculose Osteoarticular/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Regeneração Óssea/efeitos dos fármacos , Biologia Computacional , Preparações de Ação Retardada/farmacologia , Interações Medicamentosas , Quimioterapia Combinada , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...