Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Biobehav Rev ; 158: 105567, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309498

RESUMO

Prenatal alcohol exposure is the leading nongenetic cause of human intellectual impairment. The long-term impacts of prenatal alcohol exposure on health and well-being are diverse, including neuropathology leading to behavioral, cognitive, and emotional impairments. Additionally negative effects also occur on the physiological level, such as the endocrine, cardiovascular, and immune systems. Among these diverse impacts is sleep disruption. In this review, we describe how prenatal alcohol exposure affects sleep, and potential mechanisms of those effects. Furthermore, we outline the evidence that sleep disruption across the lifespan may be a mediator of some cognitive and behavioral impacts of developmental alcohol exposure, and thus may represent a promising target for treatment.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Efeitos Tardios da Exposição Pré-Natal , Feminino , Humanos , Gravidez , Transtornos do Espectro Alcoólico Fetal/etiologia , Etanol/efeitos adversos , Sono
3.
Front Neurosci ; 17: 1214100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37539379

RESUMO

Prenatal alcohol exposure (PAE) is known to cause a variety of cognitive, behavioral, and neurological changes. Importantly, mental health problems are also overrepresented in individuals with Fetal Alcohol Spectrum Disorder (FASD), the group of neurodevelopmental conditions that can occur following PAE. Approximately 90% of individuals with FASD report experiencing mental health problems over their lifespan, compared to approximately 30% in the overall population. Individuals with FASD also display impairments in coping skills and increased vulnerability to stress. Here, we investigated whether the COVID-19 pandemic would have a differential impact on mental health and inflammation-to-mood associations in adults with FASD, compared to unexposed controls (no PAE). We capitalized on our pre-pandemic study examining health and immune function and invited past-participants to enroll in the current study. Participants completed mental health assessments and COVID-related questionnaires by phone. In addition, blood samples collected at baseline (pre-pandemic) were used to probe for inflammation-to-mood associations. Overall, our results indicate that lower SES was predictive of higher coronavirus anxiety scores, with no differences between adults with FASD and controls. In addition, while there were no differences in depression or anxiety measures at baseline (pre-pandemic) or during the pandemic, examination of inflammation-to-mood associations identified differential relationships in adults with FASD compared to unexposed controls. Specifically, there was a positive association between baseline neutrophil counts and both baseline and pandemic mental health scores in unexposed controls only. In addition, for unexposed controls there was also a negative association between baseline interferon-É£ (IFN-É£) and pandemic mental health scores. By contrast, only adults with FASD showed positive associations between baseline interleukin-12p70 (IL-12p70), IL-8, soluble intercellular adhesion molecule-1 (sICAM-1), and soluble vascular cell adhesion molecule-1 (sVCAM-1) and pandemic mental health scores. Taken together, to our knowledge, this study is the first to examine the impact of the pandemic in adults with FASD. And while it may be too soon to predict the long-term effects of the pandemic on mental health, our data suggest that it will be important that future work also takes into account how immune function may be modulating mental health outcomes in this population.

4.
Neuron ; 109(24): 4018-4035.e7, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34706218

RESUMO

Social interaction deficits seen in psychiatric disorders emerge in early-life and are most closely linked to aberrant neural circuit function. Due to technical limitations, we have limited understanding of how typical versus pathological social behavior circuits develop. Using a suite of invasive procedures in awake, behaving infant rats, including optogenetics, microdialysis, and microinfusions, we dissected the circuits controlling the gradual increase in social behavior deficits following two complementary procedures-naturalistic harsh maternal care and repeated shock alone or with an anesthetized mother. Whether the mother was the source of the adversity (naturalistic Scarcity-Adversity) or merely present during the adversity (repeated shock with mom), both conditions elevated basolateral amygdala (BLA) dopamine, which was necessary and sufficient in initiating social behavior pathology. This did not occur when pups experienced adversity alone. These data highlight the unique impact of social adversity as causal in producing mesolimbic dopamine circuit dysfunction and aberrant social behavior.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Dopamina , Tonsila do Cerebelo , Animais , Humanos , Optogenética , Ratos , Comportamento Social
5.
Psychoneuroendocrinology ; 126: 105146, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33517167

RESUMO

Prenatal alcohol exposure (PAE) and early-life adversity (ELA) both negatively impact social neurobehavioral development, including social recognition memory. Importantly, while individuals with PAE are more likely to experience ELA, relatively few studies have assessed the interaction of these two early insults on adolescent social behavior development. Here, we combine animal models of PAE and ELA to investigate both their unique and interactive effects on social neurobehavioral function in early and late adolescent male and female rats. Behavioral testing was followed by assessment of hypothalamic expression of oxytocin (OT) and vasopressin (AVP), key neuropeptides in the regulation of social behavior. Our results indicate that PAE and ELA have unique sex- and age-specific effects on social recognition memory and OT/AVP expression, with more pronounced neurobehavioral changes observed in males than in females in both early and late adolescence. Specifically, ELA impaired social recognition in early adolescent females regardless of prenatal treatment, while males showed deficits in both early and late adolescence in response to unique and interactive effects of PAE and ELA. Neurobiological data suggest that these perinatal insults differentially impact the OT and AVP systems in a sexually dimorphic manner, such that the OT system appears to be particularly sensitive to PAE in males while the AVP system appears to be more vulnerable to ELA in females. Taken together, our data provide novel insight into how the early postnatal environment may mediate outcomes of PAE as well as the power of animal models to interrogate the relationship between these pre- and postnatal insults.


Assuntos
Experiências Adversas da Infância , Efeitos Tardios da Exposição Pré-Natal , Animais , Etanol , Feminino , Humanos , Masculino , Modelos Animais , Ocitocina , Gravidez , Ratos , Comportamento Social
6.
J Neuroinflammation ; 17(1): 39, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992316

RESUMO

BACKGROUND: Evidence suggests that cytokine imbalances may be at the root of deficits that occur in numerous neurodevelopmental disorders, including schizophrenia and autism spectrum disorder. Notably, while clinical studies have demonstrated maternal cytokine imbalances with alcohol consumption during pregnancy-and data from animal models have identified immune disturbances in alcohol-exposed offspring-to date, immune alterations in alcohol-exposed children have not been explored. Thus, here we hypothesized that perturbations in the immune environment as a result of prenatal alcohol exposure will program the developing immune system, and result in immune dysfunction into childhood. Due to the important role of cytokines in brain development/function, we further hypothesized that child immune profiles might be associated with their neurodevelopmental status. METHODS: As part of a longitudinal study in Ukraine, children of mothers reporting low/no alcohol consumption or moderate-to-heavy alcohol consumption during pregnancy were enrolled in the study and received neurodevelopmental assessments. Group stratification was based on maternal alcohol consumption and child neurodevelopmental status resulting in the following groups: A/TD, alcohol-consuming mother, typically developing child; A/ND, alcohol-consuming mother, neurodevelopmental delay in the child; C/TD, control mother (low/no alcohol consumption), typically development child; and C/ND, control mother, neurodevelopmental delay in the child. Forty cytokines/chemokines were measured in plasma and data were analyzed using regression and constrained principle component analysis. RESULTS: Analyses revealed differential cytokine network activity associated with both prenatal alcohol exposure and neurodevelopmental status. Specifically, alcohol-exposed children showed activation of a cytokine network including eotaxin-3, eotaxin, and bFGF, irrespective of neurodevelopmental status. However, another cytokine network was differentially activated based on neurodevelopmental outcome: A/TD showed activation of MIP-1ß, MDC, and MCP-4, and inhibition of CRP and PlGF, with opposing pattern of activation/inhibition detected in the A/ND group. By contrast, in the absence of alcohol-exposure, activation of a network including IL-2, TNF-ß, IL-10, and IL-15 was associated with neurodevelopmental delay. CONCLUSIONS: Taken together, this comprehensive assessment of immune markers allowed for the identification of unique immune milieus that are associated with alcohol exposure as well as both alcohol-related and alcohol-independent neurodevelopmental delay. These findings are a critical step towards establishing unique immune biomarkers for alcohol-related and alcohol-independent neurodevelopmental delay.


Assuntos
Depressores do Sistema Nervoso Central/efeitos adversos , Deficiências do Desenvolvimento/induzido quimicamente , Deficiências do Desenvolvimento/imunologia , Etanol/efeitos adversos , Sistema Imunitário/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Adulto , Consumo de Bebidas Alcoólicas/efeitos adversos , Pré-Escolar , Citocinas/sangue , Deficiências do Desenvolvimento/psicologia , Feminino , Humanos , Sistema Imunitário/efeitos dos fármacos , Lactente , Recém-Nascido , Estudos Longitudinais , Mães , Testes Neuropsicológicos , Gravidez , Ucrânia
7.
Proc Natl Acad Sci U S A ; 116(45): 22821-22832, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636210

RESUMO

Infant maltreatment increases vulnerability to physical and mental disorders, yet specific mechanisms embedded within this complex infant experience that induce this vulnerability remain elusive. To define critical features of maltreatment-induced vulnerability, rat pups were reared from postnatal day 8 (PN8) with a maltreating mother, which produced amygdala and hippocampal deficits and decreased social behavior at PN13. Next, we deconstructed the maltreatment experience to reveal sufficient and necessary conditions to induce this phenotype. Social behavior and amygdala deficits (volume, neurogenesis, c-Fos, local field potential) required combined chronic high corticosterone and maternal presence (not maternal behavior). Hippocampal deficits were induced by chronic high corticosterone regardless of social context. Causation was shown by blocking corticosterone during maltreatment and suppressing amygdala activity during social behavior testing. These results highlight (1) that early life maltreatment initiates multiple pathways to pathology, each with distinct causal mechanisms and outcomes, and (2) the importance of social presence on brain development.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Hipocampo/fisiopatologia , Mães/psicologia , Comportamento Social , Estresse Fisiológico , Animais , Corticosterona/administração & dosagem , Corticosterona/sangue , Feminino , Ratos
8.
Brain Res ; 1718: 242-251, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31102593

RESUMO

The dense expression of glucocorticoid receptors (GR) within the amygdala, medial prefrontal cortex (mPFC) and paraventricular nucleus of hypothalamus (PVN) mediates many aspects of emotional and stress regulation. Importantly, both prenatal alcohol exposure (PAE) and adolescent stress are known to induce emotional and stress dysregulation. Little is known, however, about how PAE and/or adolescent stress may alter the expression of GR in the amygdala, mPFC, and PVN. To fill this gap, we exposed PAE and control adolescent male and female rats to chronic mild stress (CMS) and assessed GR mRNA expression in the amygdala, mPFC, and PVN immediately following stress or in adulthood. We found that the effects of PAE on GR expression were more prevalent in the amygdala, while effects of adolescent stress on GR expression were more prevalent in the mPFC. Moreover, PAE effects in the amygdala were more pronounced during adolescence and adolescent stress effects in the mPFC were more pronounced in adulthood. GR expression in the PVN was affected by both PAE and adolescent stress. Finally, PAE and/or adolescent stress effects were distinct between males and females. Together, these results suggest that PAE and adolescent CMS induce dynamic alterations in GR expression in the amygdala, mPFC, and PVN, which manifest differently depending on the brain area, age, and sex of the animal. Additionally, these data indicate that PAE-induced hyperresponsiveness to stress and increased vulnerability to mental health problems may be mediated by different neural mechanisms depending on the sex and age of the animal.


Assuntos
Etanol/efeitos adversos , Transtornos do Espectro Alcoólico Fetal/fisiopatologia , Receptores de Glucocorticoides/metabolismo , Fatores Etários , Tonsila do Cerebelo/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Etanol/farmacologia , Feminino , Glucocorticoides/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Masculino , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Estresse Psicológico/fisiopatologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-30367959

RESUMO

Prenatal alcohol exposure (PAE) is known to cause dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, including hyperresponsivity to stressors. Dysregulation of the HPA axis plays a role in vulnerability to stress-related disorders, such as anxiety and depression. Thus, the effects of PAE on HPA function may result in increased vulnerability to the effects of stress and, in turn, lead to the development of stress-related disorders. Indeed, individuals prenatally exposed to alcohol have an increased risk of developing anxiety and depression. However, it is unclear whether hypersecretion of corticosterone (CORT) in response to stress per se is involved with mediating differential effects of stress in PAE and control animals. To investigate the role of CORT in mediating effects of stress in both adult females and males following PAE, adrenalectomy with CORT replacement (ADXR) was utilized to produce similar CORT levels among prenatal treatment groups before exposure to chronic unpredictable stress (CUS). Anxiety-like behavior was evaluated using the open field and elevated plus maze, and depressive-like behavior was examined in the forced swim test. Mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mRNA expression was assessed in the medial prefrontal cortex (mPFC), amygdala, and hippocampal formation. Under the non-CUS condition, PAE alone differentially altered anxiety-like behavior in sham but not ADXR females and males, with females showing decreased anxiety-like behavior but males exhibiting increased anxiety-like behavior compared to their control counterparts. There were no effects of PAE alone on depressive-like in females or males. PAE also decreased GR mRNA expression in the hippocampal formation in females but had no effects on MR or GR mRNA expression in any brain region in males. CUS had differential effects on anxiety- and depressive-like behavior in PAE and control animals, and these effects were sex dependent. Importantly, ADXR unmasked differences between PAE and control animals, demonstrating that CORT may play a differential role in modulating behavior and HPA activity/regulation in PAE and control animals, and may do so in a sex-dependent manner.


Assuntos
Transtornos de Ansiedade/metabolismo , Corticosterona/metabolismo , Transtorno Depressivo/metabolismo , Transtornos do Espectro Alcoólico Fetal/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Animais , Depressores do Sistema Nervoso Central/efeitos adversos , Modelos Animais de Doenças , Etanol/efeitos adversos , Feminino , Transtornos do Espectro Alcoólico Fetal/psicologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/crescimento & desenvolvimento , Masculino , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/crescimento & desenvolvimento , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Receptores de Glucocorticoides/metabolismo , Caracteres Sexuais , Estresse Psicológico/metabolismo
10.
Exp Physiol ; 103(11): 1481-1493, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30211444

RESUMO

NEW FINDINGS: What is the central question of this study? Early-life adversity is associated with increased risk for obesity and metabolic dysfunction. However, it is unclear whether obesity and metabolic dysfunction result from coping strategies to deal with adversity-related emotional dysregulation, a direct programming of systems regulating metabolic function, or a combination of both. What is the main finding and its importance? Early-life adversity increases vulnerability to later-life obesity and metabolic dysfunction, indicating that genetics and adult lifestyle are not the only determinants of obesity and related metabolic dysfunction. Moreover, consumption of cafeteria diet exacerbated metabolic dysfunction associated with early-life adversity, suggesting that poor dietary choices might have a bigger impact in the context of early-life adversity. ABSTRACT: Early-life adversity has become recognized as an important factor contributing to adult obesity and associated metabolic dysfunction. However, it is unclear whether obesity and metabolic dysfunction associated with early-life adversity result from coping strategies to deal with adversity-related emotional dysregulation, a direct programming of systems regulating metabolic function, or a combination. Interestingly, both early-life adversity and later-life dietary choices affect immune function, favouring pro-inflammatory mechanisms that are associated with obesity-related metabolic dysfunction. To investigate the unique and/or interactive effects of early-life adversity and later-life dietary choices for increased vulnerability to obesity and metabolic dysfunction, and specifically the role of the immune system in this vulnerability, we combined a naturalistic rat model of early-life scarcity-adversity with a rat model of obesity, the cafeteria diet. Our results indicate that early-life adversity alone induces insulin resistance, reduces pancreatic insulin secretion, plasma concentrations of triglycerides and cholesterol, and increases fasting glucose and tumour necrosis factor-α plasma concentrations. Importantly, animals exposed to adverse rearing were more vulnerable to metabolic dysregulation associated with the cafeteria diet, given that they consumed more energy, showed more severe hepatic steatosis and increased concentrations of the pro-inflammatory cytokine interleukin-1ß than normally reared animals fed the cafeteria diet. Together, our results suggest that early-life adversity negatively programmes physiological systems that regulate metabolic function and increases vulnerability to obesity and metabolic dysfunction in adulthood. These results highlight the intrinsic relationship between the quality of the early postnatal environment and later-life dietary choices on adult health outcomes.


Assuntos
Resistência à Insulina/fisiologia , Obesidade/metabolismo , Triglicerídeos/sangue , Animais , Dieta , Modelos Animais de Doenças , Feminino , Insulina/sangue , Interleucina-1beta/sangue , Masculino , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/sangue
11.
Psychoneuroendocrinology ; 97: 8-19, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29990678

RESUMO

Children and adults prenatally exposed to alcohol show higher rates of mental health problems than unexposed individuals, with depression and anxiety being among the more commonly encountered disorders. Previous studies in rats showed that prenatal alcohol exposure (PAE) can indeed increase depressive- and anxiety-like behavior in adulthood; however, depression and anxiety are often observed in the context of stress and/or a dysregulated stress response system (the hypothalamic-pituitary-adrenal [HPA] axis). PAE can dysregulate the HPA axis, resulting in hyperresponsivity to stress. In turn, this may predispose individuals prenatally exposed to alcohol to the adverse effects of stress compared to unexposed individuals. We have shown previously that PAE animals may be more sensitive to the effects of chronic stress on behavior, showing increased anxiety- and depressive-like behavior following chronic unpredictable stress (CUS) exposure. Here, we investigated the independent and interactive effects of PAE and adult CUS on anxiety-like behavior and receptor systems (corticotropin-releasing hormone receptor type 1 [CRHR1], mineralocorticoid receptor [MR], and glucocorticoid receptor [GR]), and underlying stress and emotional regulation, and whether exposure to CUS differentially results in immediate or delayed effects. Adult male and female offspring from PAE, pair-fed (PF), and ad libitum-fed control (C) dams were exposed to either 10 days of CUS or left undisturbed. Behavioral testing began 1 or 14 days post-CUS, and brains were collected following testing. Anxiety-like behaviors were evaluated using the open field, elevated plus maze and dark-light emergence tests. CRHR1, MR, and GR mRNA expression were assessed in the medial prefrontal cortex (mPFC), amygdala, and hippocampal formation, brain areas key to both stress and emotional regulation. We found that PAE differentially increased anxiety-like behavior and altered GR mRNA in males and females compared to their control counterparts. Furthermore, depending on the timing of testing, CUS unmasked alterations in GR and CRHR1 mRNA expression in the mPFC and amygdala in PAE males, and MR mRNA in the hippocampal formation in PAE females compared to their C counterparts. Overall, the changes observed in these receptor systems may underlie the increase in anxiety-like behavior following PAE and CUS exposure in adulthood. That CUS differentially affected brain and behavioral outcome of PAE and C animals, and did so in a sexually-dimorphic manner, has important implications for understanding the etiology of psychopathology in individuals prenatally exposed to alcohol.


Assuntos
Etanol/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Estresse Psicológico/etiologia , Animais , Ansiedade/etiologia , Ansiedade/metabolismo , Transtornos de Ansiedade/metabolismo , Depressão/etiologia , Depressão/metabolismo , Transtorno Depressivo/metabolismo , Etanol/metabolismo , Feminino , Hipocampo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Masculino , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Córtex Pré-Frontal , Gravidez , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/análise , Receptores de Hormônio Liberador da Corticotropina/efeitos dos fármacos , Receptores de Glucocorticoides/análise , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Mineralocorticoides/análise , Receptores de Mineralocorticoides/efeitos dos fármacos , Fatores Sexuais , Estresse Psicológico/fisiopatologia , Fatores de Tempo
12.
Brain Behav Immun ; 73: 205-215, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29738852

RESUMO

Cytokines and chemokines are potent modulators of brain development and as such, dysregulation of the maternal immune system can result in deviations in the fetal cytokine balance, altering the course of typical brain development, and putting the individual on a "pathway to pathology". In the current study, we used a multi-variate approach to evaluate networks of interacting cytokines and investigated whether alterations in the maternal immune milieu could be linked to alcohol-related and alcohol-independent child neurodevelopmental delay. This was achieved through the measurement of 40 cytokines/chemokines from maternal blood samples collected during the second and third trimesters of pregnancy. Importantly, during the second trimester we identified network enrichment in levels of cytokines including IFN-É£, IL-10, TNF-ß, TNF-α, and CRP associated with offspring neurodevelopmental delay. However, as elevations in levels of these cytokines have previously been reported in a wide range of neurodevelopmental disorders including autism spectrum disorder and schizophrenia, we suggest that this cytokine profile is likely not disorder specific, but rather may be an indicator of neurodevelopmental delay in general. By contrast, distinct clusters of activated/inhibited cytokines were identified based on maternal alcohol consumption and child neurodevelopmental outcome. Specifically, cytokines including IL-15, IL-10, MDC, and members of the VEGF sub-family were highest in alcohol-consuming mothers of children with neurodevelopmental delay and were identified in both network analyses and examination of individual cytokines, whereas a differential and unique cytokine profile was identified in the case of alcohol-independent child neurodevelopmental delay. We propose that the current findings could provide a critical step towards the development of early biomarkers and possibly interventions for alcohol-related neurodevelopmental delay. Importantly, the current approach could be informative for understanding mechanisms linking maternal immune system dysfunction and adverse child outcomes in a range of other neurodevelopmental disorders.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Consumo de Bebidas Alcoólicas/fisiopatologia , Quimiocinas/análise , Quimiocinas/sangue , Citocinas/análise , Citocinas/sangue , Deficiências do Desenvolvimento/etiologia , Etanol/efeitos adversos , Feminino , Humanos , Imunidade Materno-Adquirida/fisiologia , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Mães , Transtornos do Neurodesenvolvimento/etiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia
13.
Front Behav Neurosci ; 12: 42, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593510

RESUMO

Dysregulation of the hypothalamic-pituitary-adrenal (HPA) stress response has been suggested to play a role in vulnerability to stress-related disorders, such as depression. Prenatal alcohol exposure (PAE) may result in HPA dysregulation, which in turn may predispose individuals to the effects of stress exposure throughout life, and increase their risk of developing depression compared to unexposed individuals. We examined the immediate and delayed effects of chronic unpredictable stress (CUS) in adulthood on behavior of PAE animals in the forced swim test (FST) and the neurocircuitry underlying behavioral, emotional, and stress regulation. Adult male and female offspring from PAE and control conditions were tested for 2 days in the FST, with testing initiated either 1 day (CUS-1; immediate) or 14 days (CUS-14; delayed) post-CUS. Following testing, c-fos mRNA expression of the medial prefrontal cortex (mPFC), amygdala, hippocampal formation, and the paraventricular nucleus of the hypothalamus was assessed. Our results indicate that PAE and CUS interact to differentially alter FST behaviors and neural activation of several brain areas in males and females, and effects may depend on whether testing is immediate or delayed post-CUS. PAE males showed decreased time immobile (Day 1 of FST) following immediate testing, while PAE females showed increased time immobile (Day 2 of FST) following delayed testing compared to their respective control counterparts. Moreover, in males, PAE decreased c-fos mRNA expression in the lateral and central nuclei of the amygdala in the non-CUS condition, and increased c-fos mRNA expression in the CA1 in the CUS-14 condition. By contrast in females, c-fos mRNA expression in the Cg1 was decreased in PAE animals (independent of CUS) and decreased in all mPFC subregions in CUS-14 animals (independent of prenatal treatment). Constrained principal component analysis, used to identify neural and behavioral networks, revealed that PAE altered the activation of these networks and modulated the effects of CUS on these networks in a sex- and time-dependent manner. This dysregulation of the neurocircuitry underlying behavioral, emotional and stress regulation, may ultimately contribute to an increased vulnerability to psychopathologies, such as depression, that are often observed following PAE.

14.
Hippocampus ; 28(3): 201-216, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29251811

RESUMO

Many functions of the hippocampus are affected by prenatal alcohol exposure (PAE). In particular, dysregulation of the stress response is especially important because individuals with PAE carry increased risks for exposure to stressful environments throughout life. Little is known, though, about how adolescent stress in the context of PAE-related stress system dysregulation may further alter hippocampal development. Here, we investigate the short- and long-term effects of adolescent chronic mild stress (CMS) on mRNA expression of stress-related mineralocorticoid (MR), glucocorticoid (GR), and type 1 CRH (CRHR1) receptors in the dorsal and ventral hippocampal formation of PAE and control rats. Our results indicate that PAE affects the expression of stress-related receptors in the hippocampus; however, PAE effects were more prominent during adolescence, as MR and CRHR1 mRNA expression were altered in both male and female PAE animals, with GR mRNA expression alterations observed only in PAE female. In adulthood, the effects of PAE were restricted to alterations in CRHR1 mRNA expression in females, while there were no effects in males. In contrast, the effects of adolescent CMS were more pronounced in adulthood, long after stress exposure termination. Importantly, PAE animals were less responsive to adolescent CMS, with effects only on CRHR1 in PAE animals compared to the altered MR, GR, and CRHR1 mRNA expression observed in controls. Together, our results show that PAE and adolescent CMS induce dynamic alterations in the expression of stress-related receptors in the hippocampal formation that manifest differently depending on the age and sex of the animal.


Assuntos
Transtornos do Espectro Alcoólico Fetal/metabolismo , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Estresse Psicológico/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Hipocampo/efeitos dos fármacos , Masculino , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de Esteroides/metabolismo , Fatores Sexuais , Maturidade Sexual
15.
Brain Behav Immun ; 66: 210-220, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28698116

RESUMO

The contribution of the early postnatal environment to the pervasive effects of prenatal alcohol exposure (PAE) is poorly understood. Moreover, PAE often carries increased risk of exposure to adversity/stress during early life. Dysregulation of immune function may play a role in how pre- and/or postnatal adversity/stress alters brain development. Here, we combine two animal models to examine whether PAE differentially increases vulnerability to immune dysregulation in response to early-life adversity. PAE and control litters were exposed to either limited bedding (postnatal day [PN] 8-12) to model early-life adversity or normal bedding, and maternal behavior and pup vocalizations were recorded. Peripheral (serum) and central (amygdala) immune (cytokines and C-reactive protein - CRP) responses of PAE animals to early-life adversity were evaluated at PN12. Insufficient bedding increased negative maternal behavior in both groups. Early-life adversity increased vocalization in all animals; however, PAE pups vocalized less than controls. Early-life adversity reduced serum TNF-α, KC/GRO, and IL-10 levels in control but not PAE animals. PAE increased serum CRP, and levels were even higher in pups exposed to adversity. Finally, PAE reduced KC/GRO and increased IL-10 levels in the amygdala. Our results indicate that PAE alters immune system development and both behavioral and immune responses to early-life adversity, which could have subsequent consequences for brain development and later life health.


Assuntos
Etanol/administração & dosagem , Comportamento Materno , Efeitos Tardios da Exposição Pré-Natal/imunologia , Tonsila do Cerebelo/imunologia , Tonsila do Cerebelo/metabolismo , Animais , Proteína C-Reativa/metabolismo , Citocinas/sangue , Feminino , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos Sprague-Dawley , Estresse Psicológico/imunologia , Estresse Psicológico/metabolismo , Vocalização Animal
16.
Stress ; 20(5): 421-448, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28617197

RESUMO

The immediate and long-term effects of exposure to early life stress (ELS) have been documented in humans and animal models. Even relatively brief periods of stress during the first 10 days of life in rodents can impact later behavioral regulation and the vulnerability to develop adult pathologies, in particular an impairment of cognitive functions and neurogenesis, but also modified social, emotional, and conditioned fear responses. The development of preclinical models of ELS exposure allows the examination of mechanisms and testing of therapeutic approaches that are not possible in humans. Here, we describe limited bedding and nesting (LBN) procedures, with models that produce altered maternal behavior ranging from fragmentation of care to maltreatment of infants. The purpose of this paper is to discuss important issues related to the implementation of this chronic ELS procedure and to describe some of the most prominent endpoints and consequences, focusing on areas of convergence between laboratories. Effects on the hypothalamic-pituitary adrenal (HPA) axis, gut axis and metabolism are presented in addition to changes in cognitive and emotional functions. Interestingly, recent data have suggested a strong sex difference in some of the reported consequences of the LBN paradigm, with females being more resilient in general than males. As both the chronic and intermittent variants of the LBN procedure have profound consequences on the offspring with minimal external intervention from the investigator, this model is advantageous ecologically and has a large translational potential. In addition to the direct effect of ELS on neurodevelopmental outcomes, exposure to adverse early environments can also have intergenerational impacts on mental health and function in subsequent generation offspring. Thus, advancing our understanding of the effect of ELS on brain and behavioral development is of critical concern for the health and wellbeing of both the current population, and for generations to come.


Assuntos
Maus-Tratos Infantis , Cognição , Emoções , Comportamento Materno , Comportamento de Nidação , Estresse Psicológico/psicologia , Tecido Adiposo Branco/metabolismo , Animais , Animais Recém-Nascidos , Roupas de Cama, Mesa e Banho , Comportamento Animal , Epigênese Genética , Feminino , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Recém-Nascido , Masculino , Modelos Animais , Neurogênese , Sistema Hipófise-Suprarrenal/metabolismo , Reprodutibilidade dos Testes , Resiliência Psicológica , Roedores , Fatores Sexuais , Estresse Psicológico/metabolismo
17.
Psychoneuroendocrinology ; 74: 13-23, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27567117

RESUMO

Prenatal alcohol exposure (PAE) is associated with extremely high rates of psychopathologies, which may be mediated by the hypothalamic-pituitary-adrenal (HPA) dysregulation observed in exposed individuals. Of relevance, PAE carries an increased risk of exposure to stressful environments throughout life. Importantly, stressful experiences during adolescence increase vulnerability to psychopathologies. However, little is known about how adolescent stressful experiences in the context of PAE-induced HPA dysregulation may further alter the developmental trajectory and potentially contribute to the disproportionally high rate of psychopathologies observed in this population. Here we investigate the short- and long-term effects of adolescent chronic mild stress (CMS) on the emergence of anxiety-/depressive-like behaviors (open-field and forced swim test - FST) and on HPA activity (corticosterone and type 1 CRH receptor - CRHR1) in PAE male and female rats. Under non-CMS conditions, open field results indicate that PAE induced inappropriate behavior (increased time in center) in males and females, with increased activity in female adolescents, but anxiety-like behavior in adult PAE females. Conversely, FST results indicate that PAE induced depressive-like behavior in adolescent males. Exposure to CMS resulted in increased activity in adolescent males and anxiety-like behaviors in adult females. Moreover, PAE and/or CMS altered corticosterone and CRHR1 expression in the mPFC and amygdala. Together, these results suggest that PAE and adolescent CMS induce dynamic neurobehavioral alterations that manifest differently depending on the age and sex of the animal. These results highlight the importance of using both sexes as well as an ontogenetic approach when investigating the effects of environmental adversity.


Assuntos
Ansiedade , Complexo Nuclear Basolateral da Amígdala/metabolismo , Comportamento Animal/fisiologia , Depressores do Sistema Nervoso Central/efeitos adversos , Corticosterona/metabolismo , Depressão , Etanol/efeitos adversos , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Córtex Pré-Frontal/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Estresse Psicológico , Fatores Etários , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Depressão/metabolismo , Depressão/fisiopatologia , Modelos Animais de Doenças , Feminino , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Masculino , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/fisiopatologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia
18.
J Neurosci ; 36(25): 6634-50, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27335397

RESUMO

UNLABELLED: A major component of perception is hedonic valence: perceiving stimuli as pleasant or unpleasant. Here, we used early olfactory experiences that shape odor preferences and aversions to explore developmental plasticity in circuits mediating odor hedonics. We used 2-deoxyglucose autoradiographic mapping of neural activity to identify circuits differentially activated by biologically relevant preferred and avoided odors across rat development. We then further probed this system by increasing or decreasing hedonic value. Using both region of interest and functional connectivity analyses, we identified regions within primary olfactory, amygdala/hippocampal, and prefrontal cortical networks that were activated differentially by maternal and male odors. Although some activated regions remained stable across development (postnatal days 7-23), there was a developmental emergence of others that resulted in an age-dependent elaboration of hedonic-response-specific circuitry despite stable behavioral responses (approach/avoidance) to the odors across age. Hedonic responses to these biologically important odors were modified through diet suppression of the maternal odor and co-rearing with a male. This allowed assessment of hedonic circuits in isolation of the specific odor quality and/or intensity. Early experience significantly modified odor-evoked circuitry in an age-dependent manner. For example, co-rearing with a male, which induced pup attraction to male odor, reduced activity in amygdala regions normally activated by the unfamiliar avoided male odor, making this region more consistent with maternal odor. Understanding the development of odor hedonics, particularly within the context of altered early life experience, provides insight into the development of sensory processes, food preferences, and the formation of social affiliations, among other behaviors. SIGNIFICANCE STATEMENT: Odor hedonic valence controls approach-avoidance behaviors, but also modulates ongoing behaviors ranging from food preferences and social affiliation with the caregiver to avoidance of predator odors. Experiences can shape hedonic valence. This study explored brain circuitry involved in odor hedonic encoding throughout development using maternal and predator odors and assessed the effects of early life experience on odor hedonic encoding by increasing/decreasing the hedonic value of these odors. Understanding the role of changing brain circuitry during development and its impact on behavioral function is critical for understanding sensory processing across development. These data converge with exciting literature on the brain's hedonic network and highlight the significant role of early life experience in shaping the neural networks of highly biologically relevant stimuli.


Assuntos
Anedonia/fisiologia , Encéfalo/fisiologia , Odorantes , Condutos Olfatórios/fisiologia , Percepção Olfatória/fisiologia , Olfato , Animais , Animais Recém-Nascidos , Autorradiografia , Aprendizagem da Esquiva/fisiologia , Encéfalo/diagnóstico por imagem , Desoxiglucose/metabolismo , Emoções/fisiologia , Feminino , Masculino , Condutos Olfatórios/diagnóstico por imagem , Ratos , Ratos Long-Evans
19.
Psychoneuroendocrinology ; 57: 37-50, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25900594

RESUMO

Chronic alcohol consumption negatively affects health, and has additional consequences if consumption occurs during pregnancy as prenatal alcohol exposure adversely affects offspring development. While much is known on the effects of prenatal alcohol exposure in offspring less is known about effects of alcohol in dams. Here, we examine whether chronic alcohol consumption during gestation alters maternal behavior, hippocampal neurogenesis and HPA axis activity in late postpartum female rats compared with nulliparous rats. Rats were assigned to alcohol, pair-fed or ad libitum control treatment groups for 21 days (for pregnant rats, this occurred gestation days 1-21). Maternal behavior was assessed throughout the postpartum period. Twenty-one days after alcohol exposure, we assessed doublecortin (DCX) (an endogenous protein expressed in immature neurons) expression in the dorsal and ventral hippocampus and HPA axis activity. Alcohol consumption during pregnancy reduced nursing and increased self-directed and negative behaviors, but spared licking and grooming behavior. Alcohol consumption increased corticosterone and adrenal mass only in nulliparous females. Surprisingly, alcohol consumption did not alter DCX-expressing cell density. However, postpartum females had fewer DCX-expressing cells (and of these cells more immature proliferating cells but fewer postmitotic cells) than nulliparous females. Collectively, these data suggest that alcohol consumption during pregnancy disrupts maternal care without affecting HPA function or neurogenesis in dams. Conversely, alcohol altered HPA function in nulliparous females only, suggesting that reproductive experience buffers the long-term effects of alcohol on the HPA axis.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Etanol/toxicidade , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Animais , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Feminino , Sistema Hipotálamo-Hipofisário/fisiopatologia , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Animais , Neurogênese/efeitos dos fármacos , Neuropeptídeos/metabolismo , Sistema Hipófise-Suprarrenal/fisiopatologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
20.
Neuropsychopharmacology ; 40(4): 906-14, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25284320

RESUMO

Caregiver-associated cues, including those learned in abusive attachment, provide a sense of safety and security to the child. Here, we explore how cues associated with abusive attachment, such as maternal odor, can modify the enduring neurobehavioral effects of early-life abuse. Two early-life abuse models were used: a naturalistic paradigm, where rat pups were reared by an abusive mother; and a more controlled paradigm, where pups underwent peppermint odor-shock conditioning that produces an artificial maternal odor through engagement of the attachment circuit. Animals were tested for maternal odor preference in infancy, forced swim test (FST), social behavior, and sexual motivation in adulthood-in the presence or absence of maternal odors (natural or peppermint). Amygdala odor-evoked local field potentials (LFPs) via wireless electrodes were also examined in response to the maternal odors in adulthood. Both early-life abuse models induced preference for the maternal odors in infancy. In adulthood, these early-life abuse models produced FST deficits and decreased social behavior, but did not change sexual motivation. Presentation of the maternal odors rescued FST and social behavior deficits induced by early-life abuse and enhanced sexual motivation in all animals. In addition, amygdala LFPs from both abuse animal models showed unique activation within the gamma frequency (70-90 Hz) bands in response to the specific maternal odor present during early-life abuse. These results suggest that attachment-related cues learned during infancy have a profound ability to rescue neurobehavioral dysregulation caused by early-life abuse. Paradoxically, abuse-associated cues seem to acquire powerful and enduring antidepressive properties and alter amygdala modulation.


Assuntos
Condicionamento Clássico , Memória/fisiologia , Odorantes , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Potenciais de Ação/fisiologia , Tonsila do Cerebelo/fisiopatologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Instalação Elétrica , Masculino , Relações Materno-Fetais , Aprendizagem em Labirinto , Motivação , Ratos , Ratos Long-Evans , Comportamento Sexual Animal , Comportamento Social , Transtornos Relacionados ao Uso de Substâncias/psicologia , Natação/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...