Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(7): 308, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896139

RESUMO

Prion-like proteins (PrLPs) have emerged as beneficial molecules with implications in adaptive responses. These proteins possess a conserved prion-like domain (PrLD) which is an intrinsically disordered region capable of adopting different conformations upon perceiving external stimuli. Owing to changes in protein conformation, functional characteristics of proteins harboring PrLDs get altered thereby, providing a unique mode of protein-based regulation. Since PrLPs are ubiquitous in nature and involved in diverse functions, through this study, we aim to explore the role of such domains in yet another important physiological process viz. plant-microbe interactions to get insights into the mechanisms dictating cross-kingdom interactions. We have evaluated the presence and functions of PrLPs in 18 different plant-associated fungi of agricultural importance to unravel their role in plant-microbe interactions. Of the 241,997 proteins scanned, 3,820 (~ 1.6%) were identified as putative PrLPs with pathogenic fungi showing significantly higher PrLP density than their beneficial counterparts. Further, through GO enrichment analysis, we could predict several PrLPs from pathogenic fungi to be involved in virulence and formation of stress granules. Notably, PrLPs involved in (retro)transposition were observed exclusively in pathogenic fungi. We even analyzed publicly available data for the expression alterations of fungal PrLPs upon their interaction with their respective hosts which revealed perturbation in the levels of some PrLP-encoding genes during interactions with plants. Overall, our work sheds light into the probable role of prion-like candidates in plant-fungi interaction, particularly in context of pathogenesis, paving way for more focused studies for validating their role.


Assuntos
Proteínas Fúngicas , Fungos , Plantas , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Plantas/microbiologia , Fungos/genética , Fungos/metabolismo , Fungos/patogenicidade , Simulação por Computador , Doenças das Plantas/microbiologia , Proteínas Priônicas/metabolismo , Proteínas Priônicas/genética , Proteínas Priônicas/química , Príons/metabolismo , Príons/genética , Príons/química , Virulência , Interações Hospedeiro-Patógeno
2.
Gene ; 827: 146474, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35390447

RESUMO

A dominant rust resistance gene, VG 9514-Rgene was isolated through map-based cloning. Sequence analysis revealed non-synonymous mutations in the TIR, NBS and LRR region of the R-protein. Candidate gene-based markers from these SNPs revealed complete co-segregation of the isolated VG 9514-Rgene with rust resistance in a RIL population and confirmed their map position in between FRS 72 and SSR_GO340445 markers in arahy03 chromosome. Blastp search of VG 9514-Rprotein detected Arahy.T6DCA5 with >80.0% identity that localized at 142,544,745.0.142,549,184 in arahy03 chromosome. Ka/Ks calculation revealed that VG 9514-Rgene had undergone positive selection compared to four homologous genes in the groundnut genome. Homology based structure modelling of this R-protein revealed a typical consensus three-dimensional folding of TIR-NBS-LRR protein. Non-synonymous mutations in susceptible version of R-protein were mapped and found E268Q mutation in hhGRExE motif, Y309F in RNBS-A motif and I579T in MHD motif of NB-ARC domain are probable candidates for loss of function.


Assuntos
Arachis , Basidiomycota , Arachis/genética , Basidiomycota/genética , Mapeamento Cromossômico , Clonagem Molecular , Doenças das Plantas/genética , Locos de Características Quantitativas
3.
Sci Rep ; 11(1): 11247, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045617

RESUMO

Blackgram [Vigna mungo (L.) Hepper] (2n = 2x = 22), an important Asiatic legume crop, is a major source of dietary protein for the predominantly vegetarian population. Here we construct a draft genome sequence of blackgram, for the first time, by employing hybrid genome assembly with Illumina reads and third generation Oxford Nanopore sequencing technology. The final de novo whole genome of blackgram is ~ 475 Mb (82% of the genome) and has maximum scaffold length of 6.3 Mb with scaffold N50 of 1.42 Mb. Genome analysis identified 42,115 genes with mean coding sequence length of 1131 bp. Around 80.6% of predicted genes were annotated. Nearly half of the assembled sequence is composed of repetitive elements with retrotransposons as major (47.3% of genome) transposable elements, whereas, DNA transposons made up only 2.29% of the genome. A total of 166,014 SSRs, including 65,180 compound SSRs, were identified and primer pairs for 34,816 SSRs were designed. Out of the 33,959 proteins, 1659 proteins showed presence of R-gene related domains. KIN class was found in majority of the proteins (905) followed by RLK (239) and RLP (188). The genome sequence of blackgram will facilitate identification of agronomically important genes and accelerate the genetic improvement of blackgram.


Assuntos
Elementos de DNA Transponíveis , Genes vpr , Retroelementos , Vigna/genética , Sequência de Bases , Fabaceae/genética , Genoma de Planta , Genótipo
4.
BMC Plant Biol ; 19(1): 358, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31419947

RESUMO

BACKGROUND: Blackgram [Vigna mungo (L.) Hepper], is an important legume crop of Asia with limited genomic resources. We report a comprehensive set of genic simple sequence repeat (SSR) and single nucleotide polymorphism (SNPs) markers using Illumina MiSeq sequencing of transcriptome and its application in genetic variation analysis and mapping. RESULTS: Transcriptome sequencing of immature seeds of wild blackgram, V. mungo var. silvestris by Illumina MiSeq technology generated 1.9 × 107 reads, which were assembled into 40,178 transcripts (TCS) with an average length of 446 bp covering 2.97 GB of the genome. A total of 38,753 CDS (Coding sequences) were predicted from 40,178 TCS and 28,984 CDS were annotated through BLASTX and mapped to GO and KEGG database resulting in 140 unique pathways. The tri-nucleotides were most abundant (39.9%) followed by di-nucleotide (30.2%). About 60.3 and 37.6% of SSR motifs were present in the coding sequences (CDS) and untranslated regions (UTRs) respectively. Among SNPs, the most abundant substitution type were transitions (Ts) (61%) followed by transversions (Tv) type (39%), with a Ts/Tv ratio of 1.58. A total of 2306 DEGs were identified by RNA Seq between wild and cultivar and validation was done by quantitative reverse transcription polymerase chain reaction. In this study, we genotyped SNPs with a validation rate of 78.87% by High Resolution Melting (HRM) Assay. CONCLUSION: In the present study, 1621genic-SSR and 1844 SNP markers were developed from immature seed transcriptome sequence of blackgram and 31 genic-SSR markers were used to study genetic variations among different blackgram accessions. Above developed markers contribute towards enriching available genomic resources for blackgram and aid in breeding programmes.


Assuntos
Marcadores Genéticos , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Transcriptoma , Vigna/genética , Perfilação da Expressão Gênica , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...