Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Methods Enzymol ; 698: 221-245, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38886033

RESUMO

The oligo-benzamide scaffold is a rigid organic framework that can hold 2-3 functional groups as O-alkyl substituents on its benzamide units, mirroring their natural arrangement in an α-helix. Oligo-benzamides demonstrated outstanding α-helix mimicry and can be readily synthesized by following high yielding and iterative reaction steps in both solution-phase and solid-phase. A number of oligo-benzamides have been designed to emulate α-helical peptide segments in biologically active proteins and showed strong protein binding, in turn effectively disrupting protein-protein interactions in vitro and in vivo. In this chapter, the design of oligo-benzamides for mimicking α-helices, efficient synthetic routes for producing them, and their biomedical studies showing remarkable potency in inhibiting protein functions are discussed.


Assuntos
Benzamidas , Benzamidas/química , Benzamidas/farmacologia , Humanos , Peptídeos/química , Conformação Proteica em alfa-Hélice , Ligação Proteica , Animais
3.
Cancer Discov ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38591846

RESUMO

Cancer cells exhibit phenotypical plasticity and epigenetic reprogramming, which allows them to evade lineage-dependent targeted treatments by adopting lineage plasticity. The underlying mechanisms by which cancer cells exploit the epigenetic regulatory machinery to acquire lineage plasticity and therapy resistance remain poorly understood. We identified Zinc Finger Protein 397 (ZNF397) as a bona fide coactivator of the androgen receptor (AR), essential for the transcriptional program governing AR-driven luminal lineage. ZNF397 deficiency facilitates the transition of cancer cell from an AR-driven luminal lineage to a Ten-Eleven Translocation 2 (TET2)-driven lineage plastic state, ultimately promoting resistance to therapies inhibiting AR signaling. Intriguingly, our findings indicate that a TET2 inhibitor can eliminate the resistance to AR targeted therapies in ZNF397-deficient tumors. These insights uncover a novel mechanism through which prostate cancer acquires lineage plasticity via epigenetic rewiring and offer promising implications for clinical interventions designed to overcome therapy resistance dictated by lineage plasticity.

4.
Expert Opin Drug Discov ; 19(2): 225-238, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37921049

RESUMO

INTRODUCTION: Analyses of orally administered FDA-approved drugs from 1990 to 1993 enabled the identification of a set of physiochemical properties known as Lipinski's Rule of Five (Ro5). The original Ro5 and extended versions still remain the reference criteria for drug development programs. Since many bioactive compounds do not conform to the Ro5, we validated the relevance of and adherence to these rulesets in a contemporary cohort of FDA-approved drugs. AREAS COVERED: The authors noted that a significant proportion of FDA-approved orally administered parent compounds from 2011 to 2022 deviate from the original Ro5 criteria (~38%) or the Ro5 with extensions (~53%). They then evaluated if a contemporary Ro5 criteria (cRo5) could be devised to better predict oral bioavailability. Furthermore, they discuss many case studies showcasing the need for and benefit of increasing the size of certain compounds and cover several evolving strategies for improving oral bioavailability. EXPERT OPINION: Despite many revisions to the Ro5, the authors find that no single proposed physiochemical rule has universal concordance with absolute oral bioavailability. Innovations in drug delivery and formulation have dramatically expanded the range of physicochemical properties and the chemical diversity for oral administration.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Humanos , Preparações Farmacêuticas/química , Administração Oral , Disponibilidade Biológica
5.
Oncogene ; 43(4): 265-280, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030789

RESUMO

Prostate cancer (PCa) is primarily driven by aberrant Androgen Receptor (AR) signaling. Although there has been substantial advancement in antiandrogen therapies, resistance to these treatments remains a significant obstacle, often marked by continuous or enhanced AR signaling in resistant tumors. While the dysregulation of the ubiquitination-based protein degradation process is instrumental in the accumulation of oncogenic proteins, including AR, the molecular mechanism of ubiquitination-driven AR degradation remains largely undefined. We identified UBE2J1 as the critical E2 ubiquitin-conjugating enzyme responsible for guiding AR ubiquitination and eventual degradation. The absence of UBE2J1, found in 5-15% of PCa patients, results in disrupted AR ubiquitination and degradation. This disruption leads to an accumulation of AR proteins, promoting resistance to antiandrogen treatments. By employing a ubiquitination-based AR degrader to adeptly restore AR ubiquitination, we reestablished AR degradation and inhibited the proliferation of antiandrogen-resistant PCa tumors. These findings underscore the fundamental role of UBE2J1 in AR degradation and illuminate an uncharted mechanism through which PCa maintains heightened AR protein levels, fostering resistance to antiandrogen therapies.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Proteólise , Receptores Androgênicos , Enzimas de Conjugação de Ubiquitina , Humanos , Masculino , Antagonistas de Androgênios/farmacologia , Androgênios , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
6.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961351

RESUMO

Cancer cells exhibit phenotypical plasticity and epigenetic reprogramming, which allows them to evade lineage-dependent targeted treatments by adopting lineage plasticity. The underlying mechanisms by which cancer cells exploit the epigenetic regulatory machinery to acquire lineage plasticity and therapy resistance remain poorly understood. We identified Zinc Finger Protein 397 (ZNF397) as a bona fide co-activator of the androgen receptor (AR), essential for the transcriptional program governing AR-driven luminal lineage. ZNF397 deficiency facilitates the transition of cancer cell from an AR-driven luminal lineage to a Ten-Eleven Translocation 2 (TET2)-driven lineage plastic state, ultimately promoting resistance to therapies inhibiting AR signaling. Intriguingly, our findings indicate that TET2 inhibitor can eliminate the AR targeted therapies resistance in ZNF397-deficient tumors. These insights uncover a novel mechanism through which prostate and breast cancers acquire lineage plasticity via epigenetic rewiring and offer promising implications for clinical interventions designed to overcome therapy resistance dictated by lineage plasticity. Statement of Significance: This study reveals a novel epigenetic mechanism regulating tumor lineage plasticity and therapy response, enhances understanding of drug resistance and unveils a new therapeutic strategy for prostate cancer and other malignancies. Our findings also illuminate TET2's oncogenic role and mechanistically connect TET2-driven epigenetic rewiring to lineage plasticity and therapy resistance.

7.
Cancer Discov ; 13(11): 2470-2487, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37694973

RESUMO

Transposable elements hold regulatory functions that impact cell fate determination by controlling gene expression. However, little is known about the transcriptional machinery engaged at transposable elements in pluripotent and mature versus oncogenic cell states. Through positional analysis over repetitive DNA sequences of H3K27ac chromatin immunoprecipitation sequencing data from 32 normal cell states, we report pluripotent/stem and mature cell state-specific "regulatory transposable elements." Pluripotent/stem elements are binding sites for pluripotency factors (e.g., NANOG, SOX2, OCT4). Mature cell elements are docking sites for lineage-specific transcription factors, including AR and FOXA1 in prostate epithelium. Expanding the analysis to prostate tumors, we identify a subset of regulatory transposable elements shared with pluripotent/stem cells, including Tigger3a. Using chromatin editing technology, we show how such elements promote prostate cancer growth by regulating AR transcriptional activity. Collectively, our results suggest that oncogenesis arises from lineage-specific transcription factors hijacking pluripotent/stem cell regulatory transposable elements. SIGNIFICANCE: We show that oncogenesis relies on co-opting transposable elements from pluripotent stem cells as regulatory elements altering the recruitment of lineage-specific transcription factors. We further discover how co-option is dependent on active chromatin states with important implications for developing treatment options against drivers of oncogenesis across the repetitive DNA. This article is featured in Selected Articles from This Issue, p. 2293.


Assuntos
Neoplasias da Próstata , Fatores de Transcrição , Masculino , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Elementos de DNA Transponíveis/genética , Diferenciação Celular , Cromatina/genética , Neoplasias da Próstata/genética , Carcinogênese/genética
8.
J Endocr Soc ; 7(10): bvad117, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37766843

RESUMO

Background: Resistance to endocrine therapy in estrogen receptor-positive (ER+) breast cancer remains a significant clinical problem. Riluzole is FDA-approved for the treatment of amyotrophic lateral sclerosis. A benzothiazole-based glutamate release inhibitor with several context-dependent mechanism(s) of action, riluzole has shown antitumor activity in multiple malignancies, including melanoma, glioblastoma, and breast cancer. We previously reported that the acquisition of tamoxifen resistance in a cellular model of invasive lobular breast cancer is accompanied by the upregulation of GRM mRNA expression and growth inhibition by riluzole. Methods: We tested the ability of riluzole to reduce cell growth, alone and in combination with endocrine therapy, in a diverse set of ER+ invasive ductal and lobular breast cancer-derived cell lines, primary breast tumor explant cultures, and the estrogen-independent, ESR1-mutated invasive lobular breast cancer patient-derived xenograft model HCI-013EI. Results: Single-agent riluzole suppressed the growth of ER+ invasive ductal and lobular breast cancer cell lines in vitro, inducing a histologic subtype-associated cell cycle arrest (G0-G1 for ductal, G2-M for lobular). Riluzole induced apoptosis and ferroptosis and reduced phosphorylation of multiple prosurvival signaling molecules, including Akt/mTOR, CREB, and Fak/Src family kinases. Riluzole, in combination with either fulvestrant or 4-hydroxytamoxifen, additively suppressed ER+ breast cancer cell growth in vitro. Single-agent riluzole significantly inhibited HCI-013EI patient-derived xenograft growth in vivo, and the combination of riluzole plus fulvestrant significantly reduced proliferation in ex vivo primary breast tumor explant cultures. Conclusion: Riluzole may offer therapeutic benefits in diverse ER+ breast cancers, including lobular breast cancer.

9.
Cancer Cell ; 41(8): 1427-1449.e12, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37478850

RESUMO

Tumor mutational burden and heterogeneity has been suggested to fuel resistance to many targeted therapies. The cytosine deaminase APOBEC proteins have been implicated in the mutational signatures of more than 70% of human cancers. However, the mechanism underlying how cancer cells hijack the APOBEC mediated mutagenesis machinery to promote tumor heterogeneity, and thereby foster therapy resistance remains unclear. We identify SYNCRIP as an endogenous molecular brake which suppresses APOBEC-driven mutagenesis in prostate cancer (PCa). Overactivated APOBEC3B, in SYNCRIP-deficient PCa cells, is a key mutator, representing the molecular source of driver mutations in some frequently mutated genes in PCa, including FOXA1, EP300. Functional screening identifies eight crucial drivers for androgen receptor (AR)-targeted therapy resistance in PCa that are mutated by APOBEC3B: BRD7, CBX8, EP300, FOXA1, HDAC5, HSF4, STAT3, and AR. These results uncover a cell-intrinsic mechanism that unleashes APOBEC-driven mutagenesis, which plays a significant role in conferring AR-targeted therapy resistance in PCa.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Mutagênese , Mutação , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Proteínas Cromossômicas não Histona , Ribonucleoproteínas Nucleares Heterogêneas , Citidina Desaminase , Antígenos de Histocompatibilidade Menor , Complexo Repressor Polycomb 1
10.
Oncogene ; 42(30): 2347-2359, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37355762

RESUMO

Therapy resistance to second-generation androgen receptor (AR) antagonists, such as enzalutamide, is common in patients with advanced prostate cancer (PCa). To understand the metabolic alterations involved in enzalutamide resistance, we performed metabolomic, transcriptomic, and cistromic analyses of enzalutamide-sensitive and -resistant PCa cells, xenografts, patient-derived organoids, patient-derived explants, and tumors. We noted dramatically higher basal and inducible levels of reactive oxygen species (ROS) in enzalutamide-resistant PCa and castration-resistant PCa (CRPC), in comparison to enzalutamide-sensitive PCa cells or primary therapy-naive tumors respectively. Unbiased metabolomic evaluation identified that glutamine metabolism was consistently upregulated in enzalutamide-resistant PCa cells and CRPC tumors. Stable isotope tracing studies suggest that this enhanced glutamine metabolism drives an antioxidant program that allows these cells to tolerate higher basal levels of ROS. Inhibition of glutamine metabolism with either a small-molecule glutaminase inhibitor or genetic knockout of glutaminase enhanced ROS levels, and blocked the growth of enzalutamide-resistant PCa. The critical role of compensatory antioxidant pathways in maintaining enzalutamide-resistant PCa cells was validated by targeting another antioxidant program driver, ferredoxin 1. Taken together, our data identify a metabolic need to maintain antioxidant programs and a potentially targetable metabolic vulnerability in enzalutamide-resistant PCa.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética , Antioxidantes/farmacologia , Glutaminase , Glutamina , Espécies Reativas de Oxigênio , Resistencia a Medicamentos Antineoplásicos/genética , Nitrilas , Antagonistas de Receptores de Andrógenos/farmacologia , Linhagem Celular Tumoral
12.
Urol Clin North Am ; 49(4): 603-614, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36309417

RESUMO

Testosterone is a steroid hormone that is responsible for the development of normal male sexual characteristics and function as well as the maintenance of homeostasis among multiple organ systems throughout life. Testosterone production is regulated by the hypothalamic-pituitary axis under the direction of gonadotropin-releasing hormone and luteinizing hormone. The testosterone-bound androgen receptor (AR) is a potent regulator of gene expression and may regulate a significant proportion of genes in prostate cells. Therapeutic modulation of testosterone levels and AR signaling activity can be achieved by several different approaches, with distinct consequences and side effects.


Assuntos
Receptores Androgênicos , Testosterona , Masculino , Humanos , Hormônio Luteinizante/metabolismo , Próstata , Hormônio Liberador de Gonadotropina/metabolismo
13.
Expert Opin Emerg Drugs ; 27(3): 301-309, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36062456

RESUMO

INTRODUCTION: Prostate cancer is the most common solid organ malignancy in men in the United States. Until recently, treatment options for men with metastatic disease were limited and patients faced poor outcomes with minimal alternatives. The landscape of prostate cancer treatment has transformed and taken shape over the last 20 years with novel hormonal and non-hormonal therapeutics that have demonstrated significant improvement in survival. However, patients with advanced disease still face imminent progression on hormone blockade therapy. AREAS COVERED: There is a significant market opportunity to devise novel, more potent agents for patients with hormone-resistant disease. Here we review the existing treatment options in men with advanced prostate cancer, the market opportunity within this field, goals of current research, and the novel agents under investigation, including androgen receptor degraders, testosterone synthesis pathway inhibitors, DNA-binding domain and N-terminal domain antagonists, and the combination of hormonal and non-hormonal agents. EXPERT OPINION: Combination therapy regimens and novel agents targeting alternative binding domains of the androgen receptor are of great interest, as they may overcome resistance mechanisms and hold promise as the future of advanced prostate cancer treatment.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Hormônios , Neoplasias de Próstata Resistentes à Castração/patologia
14.
Nat Cancer ; 3(9): 1071-1087, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36065066

RESUMO

Emerging evidence indicates that various cancers can gain resistance to targeted therapies by acquiring lineage plasticity. Although various genomic and transcriptomic aberrations correlate with lineage plasticity, the molecular mechanisms enabling the acquisition of lineage plasticity have not been fully elucidated. We reveal that Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling is a crucial executor in promoting lineage plasticity-driven androgen receptor (AR)-targeted therapy resistance in prostate cancer. Importantly, ectopic JAK-STAT activation is specifically required for the resistance of stem-like subclones expressing multilineage transcriptional programs but not subclones exclusively expressing the neuroendocrine-like lineage program. Both genetic and pharmaceutical inhibition of JAK-STAT signaling resensitizes resistant tumors to AR-targeted therapy. Together, these results suggest that JAK-STAT are compelling therapeutic targets for overcoming lineage plasticity-driven AR-targeted therapy resistance.


Assuntos
Janus Quinases , Neoplasias da Próstata , Humanos , Janus Quinases/genética , Masculino , Preparações Farmacêuticas , Receptores Androgênicos/genética , Fatores de Transcrição STAT/genética
15.
Crit Rev Oncog ; 27(1): 81-96, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35993980

RESUMO

Prostate cancer (PCa) is one of the leading causes of cancer diagnoses and cancer-related deaths in the United States. Mutations or deletions in the genes involved in the DNA damage response (DDR) are common in aggressive primary PCa (germline alterations) and further enriched in advanced therapy-resistant PCa (somatic alterations). Among the DDR genes, BRCA2 is the most commonly altered (~ 13%) in advanced therapy-resistant PCa. Patients with BRCA2-altered PCas are exquisitely sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis). Indeed, two PARPis-olaparib and rucaparib have recently gained U.S. Food & Drug Administration approval for the treatment of advanced PCas harboring a BRCA2 mutation. This review seeks to explore the role of BRCA2 in DNA damage repair, the pathogenesis and progression of BRCA2 mutant PCa, and the utility of radiation therapy, targeted therapies, and platinum-based chemotherapies for patients with BRCA2 alterations.


Assuntos
Genes BRCA2 , Neoplasias da Próstata , Proteína BRCA2/genética , Reparo do DNA/genética , Humanos , Masculino , Mutação , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética
16.
Cancer Res ; 82(20): 3830-3844, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35950923

RESUMO

Most patients with estrogen receptor alpha-positive (ER+) breast cancers initially respond to treatment but eventually develop therapy resistance with disease progression. Overexpression of oncogenic ER coregulators, including proline, glutamic acid, and leucine-rich protein 1 (PELP1), are implicated in breast cancer progression. The lack of small molecules that inhibits PELP1 represents a major knowledge gap. Here, using a yeast-two-hybrid screen, we identified novel peptide inhibitors of PELP1 (PIP). Biochemical assays demonstrated that one of these peptides, PIP1, directly interacted with PELP1 to block PELP1 oncogenic functions. Computational modeling of PIP1 revealed key residues contributing to its activity and facilitated the development of a small-molecule inhibitor of PELP1, SMIP34, and further analyses confirmed that SMIP34 directly bound to PELP1. In breast cancer cells, SMIP34 reduced cell growth in a dose-dependent manner. SMIP34 inhibited proliferation of not only wild-type (WT) but also mutant (MT) ER+ and therapy-resistant breast cancer cells, in part by inducing PELP1 degradation via the proteasome pathway. RNA sequencing analyses showed that SMIP34 treatment altered the expression of genes associated with estrogen response, cell cycle, and apoptosis pathways. In cell line-derived and patient-derived xenografts of both WT and MT ER+ breast cancer models, SMIP34 reduced proliferation and significantly suppressed tumor progression. Collectively, these results demonstrate SMIP34 as a first-in-class inhibitor of oncogenic PELP1 signaling in advanced breast cancer. SIGNIFICANCE: Development of a novel inhibitor of oncogenic PELP1 provides potential therapeutic avenues for treating therapy-resistant, advanced ER+ breast cancer.


Assuntos
Neoplasias da Mama , Proteínas Correpressoras , Fatores de Transcrição , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proteínas Correpressoras/antagonistas & inibidores , Proteínas Correpressoras/metabolismo , Receptor alfa de Estrogênio/genética , Estrogênios , Feminino , Ácido Glutâmico , Humanos , Leucina , Prolina , Complexo de Endopeptidases do Proteassoma , Receptores de Estrogênio/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo
17.
JCI Insight ; 7(17)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35881485

RESUMO

Acquired mutations in the ligand-binding domain (LBD) of the gene encoding estrogen receptor α (ESR1) are common mechanisms of endocrine therapy resistance in patients with metastatic ER+ breast cancer. The ESR1 Y537S mutation, in particular, is associated with development of resistance to most endocrine therapies used to treat breast cancer. Employing a high-throughput screen of nearly 1,200 Federal Drug Administration-approved (FDA-approved) drugs, we show that OTX015, a bromodomain and extraterminal domain (BET) inhibitor, is one of the top suppressors of ESR1 mutant cell growth. OTX015 was more efficacious than fulvestrant, a selective ER degrader, in inhibiting ESR1 mutant xenograft growth. When combined with abemaciclib, a CDK4/6 inhibitor, OTX015 induced more potent tumor regression than current standard-of-care treatment of abemaciclib + fulvestrant. OTX015 has preferential activity against Y537S mutant breast cancer cells and blocks their clonal selection in competition studies with WT cells. Thus, BET inhibition has the potential to both prevent and overcome ESR1 mutant-induced endocrine therapy resistance in breast cancer.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Fulvestranto/farmacologia , Fulvestranto/uso terapêutico , Humanos , Mutação , Domínios Proteicos , Transcrição Gênica
18.
Nat Cancer ; 3(7): 866-884, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654861

RESUMO

Triple-negative breast cancer (TNBC) has a poor clinical outcome, due to a lack of actionable therapeutic targets. Herein we define lysosomal acid lipase A (LIPA) as a viable molecular target in TNBC and identify a stereospecific small molecule (ERX-41) that binds LIPA. ERX-41 induces endoplasmic reticulum (ER) stress resulting in cell death, and this effect is on target as evidenced by specific LIPA mutations providing resistance. Importantly, we demonstrate that ERX-41 activity is independent of LIPA lipase function but dependent on its ER localization. Mechanistically, ERX-41 binding of LIPA decreases expression of multiple ER-resident proteins involved in protein folding. This targeted vulnerability has a large therapeutic window, with no adverse effects either on normal mammary epithelial cells or in mice. Our study implicates a targeted strategy for solid tumors, including breast, brain, pancreatic and ovarian, whereby small, orally bioavailable molecules targeting LIPA block protein folding, induce ER stress and result in tumor cell death.


Assuntos
Estresse do Retículo Endoplasmático , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Lipase/química , Camundongos , Dobramento de Proteína , Neoplasias de Mama Triplo Negativas/genética
19.
Mod Pathol ; 35(10): 1468-1474, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35606411

RESUMO

Locally relapsed prostate cancer (PCa) after radiation therapy (RT) is associated with substantial morbidity and mortality. Morphological and molecular consequences that may contribute to RT resistance and local recurrence remain poorly understood. Locally recurrent PCa tissue from 53 patients with clinically localized PCa who failed with primary RT and subsequently underwent salvage radical prostatectomy (RP) was analyzed for tumor focality, clinicopathological, molecular, and genomic characteristics. Targeted next-generation sequencing with full exon coverage of 1,425 cancer-related genes was performed on 10 representative radiorecurrent PCas exhibiting no RT effect with matched adjacent benign prostate tissue. At RP, 37 (70%) of PCas had no RT effect with the following characteristics: grade group (GG) ≥ 3 (70%), unifocal tumor (75%), extraprostatic disease (78%), lymph node metastasis (8%), and "cribriform" morphologies (84%) [cribriform PCa (78%) or intraductal carcinoma (IDC-P) (61%)] at a median percentage of approximately 80% of tumor volume. In the setting of multifocal tumors (25%) at RP, the cribriform morphologies were restricted to index tumors. Of 32 patients with available pre-RT biopsy information, 16 had GG1 PCa, none had cribriform morphologies at baseline but 81% demonstrated cribriform morphologies at RP. Notable alterations detected in the sequenced tumors included: defects in DNA damage response and repair (DDR) genes (70%) (TP53, BRCA2, PALB2, ATR, POLQ), PTEN loss (50%), loss of 8p (80%), and gain of MYC (70%). The median tumor mutational burden was 4.18 mutations/Mb with a range of 2.16 to 31.86. Our findings suggest that most radiorecurrent PCas are enriched in cribriform morphologies with potentially targetable genomic alterations. Understanding this phenotypic and genotypic diversity of radiorecurrent PCa is critically important to facilitate optimal patient management.


Assuntos
Adenocarcinoma , Carcinoma Intraductal não Infiltrante , Neoplasias da Próstata , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/radioterapia , Carcinoma Intraductal não Infiltrante/patologia , Genômica , Humanos , Masculino , Gradação de Tumores , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/radioterapia , Prostatectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/radioterapia
20.
JCI Insight ; 7(9)2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35349486

RESUMO

The bromodomain and extraterminal (BET) family of chromatin reader proteins bind to acetylated histones and regulate gene expression. The development of BET inhibitors (BETi) has expanded our knowledge of BET protein function beyond transcriptional regulation and has ushered several prostate cancer (PCa) clinical trials. However, BETi as a single agent is not associated with antitumor activity in patients with castration-resistant prostate cancer (CRPC). We hypothesized novel combinatorial strategies are likely to enhance the efficacy of BETi. By using PCa patient-derived explants and xenograft models, we show that BETi treatment enhanced the efficacy of radiation therapy (RT) and overcame radioresistance. Mechanistically, BETi potentiated the activity of RT by blocking DNA repair. We also report a synergistic relationship between BETi and topoisomerase I (TOP1) inhibitors (TOP1i). We show that the BETi OTX015 synergized with the new class of synthetic noncamptothecin TOP1i, LMP400 (indotecan), to block tumor growth in aggressive CRPC xenograft models. Mechanistically, BETi potentiated the antitumor activity of TOP1i by disrupting replication fork stability. Longitudinal analysis of patient tumors indicated that TOP1 transcript abundance increased as patients progressed from hormone-sensitive prostate cancer to CRPC. TOP1 was highly expressed in metastatic CRPC, and its expression correlated with the expression of BET family genes. These studies open new avenues for the rational combinatorial treatment of aggressive PCa.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Histonas/metabolismo , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/radioterapia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...