Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Urol ; 24(1): 20, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273296

RESUMO

BACKGROUND: Multiple Sclerosis (MS) is an often debilitating disease affecting the myelin sheath that encompasses neurons. It can be accompanied by a myriad of pathologies and adverse effects such as neurogenic lower urinary tract dysfunction (NLUTD). Current treatment modalities for resolving NLUTD focus mainly on alleviating symptoms while the source of the discomfort emanates from a disruption in brain to bladder neural circuitry. Here, we leverage functional magnetic resonance imaging (fMRI), repetitive transcranial magnetic stimulation (rTMS) protocols and the brains innate neural plasticity to aid in resolving overactive bladder (OAB) symptoms associated with NLUTD. METHODS: By employing an advanced neuro-navigation technique along with processed fMRI and diffusion tensor imaging data to help locate specific targets in each participant brain, we are able to deliver tailored neuromodulation protocols and affect either an excitatory (20 min @ 10 Hz, applied to the lateral and medial pre-frontal cortex) or inhibitory (20 min @ 1 Hz, applied to the pelvic supplemental motor area) signal on neural circuitry fundamental to the micturition cycle in humans to restore or reroute autonomic and sensorimotor activity between the brain and bladder. Through a regimen of questionnaires, bladder diaries, stimulation sessions and analysis, we aim to gauge rTMS effectiveness in women with clinically stable MS. DISCUSSION: Some limitations do exist with this study. In targeting the MS population, the stochastic nature of MS in general highlights difficulties in recruiting enough participants with similar symptomology to make meaningful comparisons. As well, for this neuromodulatory approach to achieve some rate of success, there must be enough intact white matter in specific brain regions to receive effective stimulation. While we understand that our results will represent only a subset of the MS community, we are confident that we will accomplish our goal of increasing the quality of life for those burdened with MS and NLUTD. TRIAL REGISTRATION: This trial is registered at ClinicalTrials.gov (NCT06072703), posted on Oct 10, 2023.


Assuntos
Esclerose Múltipla , Bexiga Urinária Hiperativa , Humanos , Feminino , Esclerose Múltipla/complicações , Esclerose Múltipla/terapia , Imagem de Tensor de Difusão , Qualidade de Vida , Encéfalo , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
J Urol ; 207(3): 657-668, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34694911

RESUMO

PURPOSE: Voiding dysfunction (VD) leading to urinary retention is a common neurogenic lower urinary tract symptom in patients with multiple sclerosis (MS). Currently, the only effective management for patients with MS with VD is catheterization. Transcranial Rotating Permanent Magnet Stimulator (TRPMS) is a noninvasive, portable, multifocal neuromodulator that simultaneously modulates multiple cortical regions and the strength of their functional connections. In this pilot trial (ClinicalTrials.gov Identifier: NCT03574610), we investigated the safety and therapeutic effects of TRPMS in modulating brain regions of interest (ROIs) engaged with voiding initiation to improve VD in MS women. MATERIALS AND METHODS: Ten MS women with VD (having % post-void residual/bladder capacity [%PVR/BC] ≥40% or being in the lower 10th percentile of the Liverpool nomogram) underwent concurrent functional magnetic resonance imaging/urodynamic study (fMRI/UDS) with 3 cycles of bladder filling/emptying, at baseline and post-treatment. Predetermined ROIs and their activations at voiding initiation were identified on patients' baseline fMRI/UDS scans, corresponding to microstimulator placement. Patients received 10 consecutive 40-minute treatment sessions. Brain activation group analysis, noninstrumented uroflow, and validated questionnaires were compared at baseline and post-treatment. RESULTS: No treatment-related adverse effects were reported. Post-treatment, patients showed significantly increased activation in regions known to be involved at voiding initiation in healthy subjects. %PVR/BC significantly decreased. Significant improvement of bladder emptying symptoms were reported by patients via validated questionnaires. CONCLUSIONS: Both neuroimaging and clinical data suggested TRPMS effectively and safely modulated brain regions that are involved in the voiding phase of the micturition cycle, leading to clinical improvements in bladder emptying in patients with MS.


Assuntos
Esclerose Múltipla/fisiopatologia , Estimulação Magnética Transcraniana/métodos , Bexiga Urinaria Neurogênica/fisiopatologia , Bexiga Urinaria Neurogênica/terapia , Adulto , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Neuroimagem , Projetos Piloto , Urodinâmica
3.
Pilot Feasibility Stud ; 7(1): 83, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33757581

RESUMO

BACKGROUND: Voiding dysfunction (VD) is a common neurogenic lower urinary tract dysfunction (NLUTD) in multiple sclerosis (MS) patients. Currently, the only effective management for VD and urinary retention in MS patients is catheterization, prompting us to look for novel therapeutic options beyond the bladder, such as the brain. Transcranial rotating permanent magnet stimulator (TRPMS) is a non-invasive, portable, multifocal neuromodulator that simultaneously modulates multiple cortical regions, enhancing or attenuating strengths of functional connections between these regions. The objective of this pilot clinical trial is to evaluate the feasibility of a TRPMS trial to address lower urinary tract symptoms in MS patients, through investigating the therapeutic effects of TRPMS in modulating brain regions during voiding initiation and mitigating VD in female MS individuals. METHODS: Ten adult female MS patients with VD (defined as having %post-void residual/bladder capacity (%PVR/BC) ≥ 40% or Liverpool nomogram percentile < 10%) will be recruited for this study. Concurrent urodynamic and functional MRI evaluation with a bladder filling/emptying task repeated three to four times will be performed at baseline and post-treatment. Predetermined regions of interest and their blood-oxygen-level-dependent (BOLD) activation at voiding initiation will be identified on each patient's baseline anatomical and functional MRI scan, corresponding to the microstimulators placement on their individualized TRPMS treatment cap to either stimulate or inhibit these regions. Patients will receive 10 40-min treatment sessions. Non-instrumented uroflow and validated questionnaires will also be collected at baseline and post-treatment to evaluate clinical improvement. DISCUSSION: Despite the crucial role of the central nervous system in urinary control and its sensitivity to MS, there has been no treatment for urinary dysfunction targeting the brain centers that are involved in proper bladder function. This trial, to our knowledge, will be the first of its kind in humans to consider non-invasive and individualized cortical modulation for treating VD in MS patients. Results from this study will provide a better understanding of the brain control of neurogenic bladders and lay the foundation for a potential alternative therapy for VD in MS patients and other NLUTD in a larger neurogenic population in the future. TRIAL REGISTRATION: This trial is registered at ClinicalTrials.Gov ( NCT03574610 , 2 July 2018.) and Houston Methodist Research Institute IRB (PRO00019329).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...