Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pharmaceutics ; 15(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36986664

RESUMO

Fibre-based oral drug delivery systems are an attractive approach to addressing low drug solubility, although clear strategies for incorporating such systems into viable dosage forms have not yet been demonstrated. The present study extends our previous work on drug-loaded sucrose microfibres produced by centrifugal melt spinning to examine systems with high drug loading and investigates their incorporation into realistic tablet formulations. Itraconazole, a model BCS Class II hydrophobic drug, was incorporated into sucrose microfibres at 10, 20, 30, and 50% w/w. Microfibres were exposed to high relative humidity conditions (25 °C/75% RH) for 30 days to deliberately induce sucrose recrystallisation and collapse of the fibrous structure into powdery particles. The collapsed particles were successfully processed into pharmaceutically acceptable tablets using a dry mixing and direct compression approach. The dissolution advantage of the fresh microfibres was maintained and even enhanced after humidity treatment for drug loadings up to 30% w/w and, importantly, retained after compression into tablets. Variations in excipient content and compression force allowed manipulation of the disintegration rate and drug content of the tablets. This then permitted control of the rate of supersaturation generation, allowing the optimisation of the formulation in terms of its dissolution profile. In conclusion, the microfibre-tablet approach has been shown to be a viable method for formulating poorly soluble BCS Class II drugs with improved dissolution performance.

2.
Pharmaceutics ; 13(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808875

RESUMO

A lack of effective intervention in addressing patient non-adherence and the acceptability of solid oral dosage forms combined with the clinical consequences of swallowing problems in an ageing world population highlight the need for developing methods to study the swallowability of tablets. Due to the absence of suitable techniques, this study developed various in vitro analytical tools to assess physical properties governing the swallowing process of tablets by mimicking static and dynamic stages of time-independent oral transitioning events. Non-anatomical models with oral mucosa-mimicking surfaces were developed to assess the swallowability of tablets; an SLA 3D printed in vitro oral apparatus derived the coefficient of sliding friction and a friction sledge for a modified tensometer measured the shear adhesion profile. Film coat hydration and in vitro wettability was evaluated using a high-speed recording camera that provided quantitative measurements of micro-thickness changes, simulating static in vivo tablet-mucosa oral processing stages with artificial saliva. In order to ascertain the discriminatory power and validate the multianalytical framework, a range of commonly available tablet coating solutions and new compositions developed in our lab were comparatively evaluated according to a quantitative swallowability index that describes the mathematical relationship between the critical physical forces governing swallowability. This study showed that the absence of a film coat significantly impeded the ease of tablet gliding properties and formed chalky residues caused by immediate tablet surface erosion. Novel gelatin- and λ-carrageenan-based film coats exhibited an enhanced lubricity, lesser resistance to tangential motion, and reduced stickiness than polyvinyl alcohol (PVA)-PEG graft copolymer, hydroxypropyl methylcellulose (HPMC), and PVA-coated tablets; however, Opadry® EZ possessed the lowest friction-adhesion profile at 1.53 a.u., with the lowest work of adhesion profile at 1.28 J/mm2. For the first time, the in vitro analytical framework in this study provides a fast, cost-effective, and repeatable swallowability ranking method to screen the in vitro swallowability of solid oral medicines in an effort to aid formulators and the pharmaceutical industry to develop easy-to-swallow formulations.

3.
Pharmaceutics ; 12(10)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977445

RESUMO

Older people represent a very heterogeneous patient population and are the major user group of medication. Age-related changes mean that this population can encounter barriers towards taking medicines orally. The aim of this study was to investigate the characteristics of oral solid dosage forms that contribute to an age appropriate dosage design, with an aim to improve overall medication adherence and acceptance in older people. Fifty-two semistructured interviews were conducted with older people, informal (family) carers, and health and social care professionals. Formulation characteristics impacted three stages of the medication taking process: (1) medication identification and memorability, (2) medication handling and (3) swallowability. Small round tablets (≤7 mm) are least accepted amongst older people and their carers and had a negative impact on all stages. The use of bright, two-coloured preparations and interesting shapes improves identification and further aids memorability of indications and the timing of tablets. Palatability, while useful to enhance swallowability, also has an impact on the visual appeal and memorability of medication. Environmental, patient, medication and disease characteristics also determine preferences for formulation. Developing an age appropriate dosage design for older people, therefore, requires a holistic, patient-centric approach to improve adherence and acceptance.

4.
Carbohydr Polym ; 238: 116208, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32299558

RESUMO

Starch-based excipients are commonly used in oral solid dosage forms. The effect of particle size and pregelatinisation level of starch-based excipients on their water absorption behaviour have been evaluated. The results showed that starch-based excipients have type ii isotherms, indicating that the principal mechanism of sorption is the formation of monolayer coverage and multilayer water molecules (10-80 RH %). It was found that the particle size of starch-based excipients did not have any influence on the rate of water sorption, whereas the level of pregelatinisation changed the kinetics of water sorption-desorption. Results showed that the higher the degree of pregelatinisation, the higher the rate of water absorption, which is irrespective of particle size. SEM images showed that a partially gelatinised starch had a firm granular structure with small pores and channels on the surface while a fully gelatinised starch had more irregular and spongy like surface with a degree of fractured particles.


Assuntos
Excipientes/química , Amido/química , Vapor , Absorção Fisico-Química , Cinética , Modelos Químicos , Tamanho da Partícula , Propriedades de Superfície
5.
J Am Med Dir Assoc ; 21(8): 1015-1023.e8, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32224260

RESUMO

OBJECTIVES: Age-related changes mean that the older population can encounter barriers toward taking medication orally. Further work is needed to identify the characteristics of oral solid dosage forms that will improve patient acceptance and adherence. The aim of this systematic review was to identify if and how formulation aspects of oral solid dosage forms affect acceptance and adherence in older people. DESIGN: Mixed methods systematic review using a data-based convergent synthesis design. SETTING AND PARTICIPANTS: Articles were selected if they included participants aged 60 years and older, or included health care professionals, social care professionals, and informal carers of patients aged 60 years and older. METHODS: A systematic search of the following databases was undertaken: Web of Science, MEDLINE, Scopus, and The Cochrane Databases. The search of databases was supplemented by a search of gray literature, and reference lists of included papers were manually searched. RESULTS: A total of 16 studies were included in the final synthesis. Three themes were generated from the thematic analysis: (1) dimensions, (2) palatability, and (3) appearance. The dimensions and palatability are often modified to improve swallowability by breaking tablets in half or taste masking with food. Polypharmacy can lead to patients using the appearance to identify tablets; however, this can lead to confusion when products appear similar. No study was identified that explored formulation characteristics across all 3 categories directly in the older population. CONCLUSION AND IMPLICATIONS: Manufacturers should take into account practical problems older people may encounter when considering the dimensions, palatability, and appearance of the final drug product. These characteristics should be optimized to aid visual identification and swallowability. Medical providers and pharmacists have an important role in ensuring that these patient-centric drug products are prescribed and dispensed appropriately so that patients receive the most suitable formulation.


Assuntos
Farmacêuticos , Polimedicação , Idoso , Pessoal de Saúde , Humanos , Pessoa de Meia-Idade
6.
Sci Rep ; 9(1): 12467, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462654

RESUMO

Disintegration time is the key critical quality attribute for a tablet classed as an Orally Disintegrating Tablet (ODT). The currently accepted in vitro testing regimen for ODTs is the standard United States Pharmacopeia (USP) test for disintegration of immediate release tablets, which requires a large volume along with repeated submergence of the dosage form within the disintegration medium. The aim of this study was to develop an in vivo relevant ODT disintegration test that mimicked the environment of the oral cavity, including lower volume of disintegration medium, with relevant temperature and humidity that represent the conditions of the mouth. The results showed that the newly developed Aston test was able to differentiate between different ODTs with small disintegration time windows, as well as between immediate release tablets and ODTs. The Aston test provided higher correlations between ODT properties and disintegration time compared to the USP test method and most significantly, resulted in a linear in vitro/in vivo correlation (IVIVC) (R2 value of 0.98) compared with a "hockey stick" profile of the USP test. This study therefore concluded that the newly developed Aston test is an accurate, repeatable, relevant and robust test method for assessing ODT disintegration time which will provide the pharmaceutical industry and regulatory authorities across the world with a pragmatic ODT testing regime.


Assuntos
Mastigação , Boca , Comprimidos/administração & dosagem , Comprimidos/química , Administração Oral , Adulto , Feminino , Humanos , Masculino , Solubilidade
7.
Mol Pharm ; 16(5): 2095-2105, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30900905

RESUMO

The majority of active pharmaceutical ingredients (APIs) are bitter. Therefore, compliance can be a problem where adequate taste masking has not been achieved; this is most problematic in pediatrics. Taste masking is thus a key stage during pharmaceutical development with an array of strategies available to the formulation scientist. Solid oral dosage forms can be taste-masked quite simply by polymer coating, which prevents drug release in the mouth, without unwantedly impairing drug release further down the gastrointestinal tract. At the early stages of pharmaceutical development, an in vitro method for the assessment of taste masking is necessary given the lack of toxicological data preventing the use of human taste panels. Currently, there is no such tool allowing prediction of taste masking efficiency. In this study, drug dissolution in the context of aversive taste thresholds was proposed as a means to bridge this knowledge gap. Thus, a biorelevant buccal dissolution test was developed in which previously determined taste thresholds in vivo were used to evaluate taste masking efficiency: if drug release exceeded said thresholds, the formulation was deemed to be poorly taste-masked, and vice versa. This novel dissolution test was compared to the USP I (basket) dissolution test, and the biopharmaceutical implications of taste masking were also assessed by performing USP I (basket) dissolution testing in simulated gastric fluid (SGF). Chlorphenamine maleate, a model bitter BCS class 1 API, was layered onto sugar spheres and taste-masked using polymer coatings. An array of coating technologies were employed and assessed single blinded: two pH-independent water-insoluble coatings (Surelease:Opadry at 8, 12, and 16% weight gain and Opadry EC at 4, 6, and 8% weight gain) and a pH-dependent water-insoluble reverse-enteric coating (developmental fully formulated system based on Kollicoat Smartseal 100P at 10% weight gain). Both the biorelevant buccal and the USP I dissolution tests were capable of discriminating between both type and level of coating used. However, only the buccal dissolution test was able to provide absolute quantification of the level of taste masking achieved in the context of previously determined taste thresholds, while the USP I test merely provided a relative comparison between the different technologies assessed. When the release data from the buccal test were assessed in parallel to that in SGF, it was possible to predict in vitro optimized taste masking without compromising bioavailability. The fully formulated system based on Smartseal 100P was identified as the most effective coating and Surelease:Opadry the least effective. The developed methodology provides true insight for the formulator, enabling more informed patient-centric formulation decisions, better taste masking, and ultimately more effective medicines.


Assuntos
Composição de Medicamentos/métodos , Desenvolvimento de Medicamentos/métodos , Liberação Controlada de Fármacos , Paladar/fisiologia , Administração Oral , Adolescente , Adulto , Animais , Celulose/análogos & derivados , Celulose/química , Clorfeniramina/administração & dosagem , Clorfeniramina/farmacologia , Feminino , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Masculino , Pessoa de Meia-Idade , Ratos , Método Simples-Cego , Solubilidade , Açúcares/química , Adulto Jovem
8.
J Pharm Pharmacol ; 71(6): 889-897, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30784086

RESUMO

OBJECTIVE: In this study, we develop and apply a high-throughput screening protocol to investigate the activity of non-ionic surfactants, with a broad range of hydrophilic-lipophilic balance values, against ABCB1-mediated efflux transport and ABCC2-mediated efflux transport. METHODS: Caco-2 cells were grown for 7 days in 96-well plates, then washed and incubated with the test materials for 2 h in the presence of 2.5 µm of either rhodamine 123 (R-123) or 5(6)-Carboxy-2',7' dichlorofluorescein diacetate as probes of ABCB1 and ABCC2, respectively. KEY FINDINGS: Of the surfactants tested, no activity against ABCC2 was detected and all surfactants showing efficacy against ABCB1 had a HLB value of 22 or below. Inhibition of ABCB1 was seen in the order of efficacy to be poloxamer 335 > poloxamer 40 > Crovol A-70 > Myrj S-40 > poloxamer 184 > poloxamer 182 > Etocas 40 > Tween 20 > Etocas 29 > Tween 80 > Acconon C-44 > Span 20. With regard to this inhibition, the distribution of hydrophilic regions is more important than the HLB value. CONCLUSION: This work demonstrates a high-throughput protocol for detecting materials that can modulate ABCB1-mediated efflux. These surfactants could be exploited to improve oral delivery of drugs prone to efflux.


Assuntos
Excipientes/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Tensoativos/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Excipientes/química , Fluoresceínas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Rodamina 123/metabolismo , Tensoativos/química
9.
Pharm Dev Technol ; 23(10): 1146-1155, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30303433

RESUMO

A key part of the Risk Assessment of excipients is to understand how raw material variability could (or does) contribute to differences in performance of the drug product. Here we demonstrate an approach which achieves the necessary understanding for a complex, functional, excipient. Multivariate analysis (MVA) of the certificates of analysis of an ethylcellulose aqueous dispersion (Surelease) formulation revealed low overall variability of the properties of the systems. Review of the scores plot to highlight batches manufactured using the same ethylcellulose raw material in the formulation, indicated that these batches tend to be more closely related than other randomly selected batches. This variability could result in potential differences in the quality of drug product lots made from these batches. Manufacture of a model drug product from Surelease batches coated using different lots of starting material revealed small differences in the release of a model drug, which could be detected by certain model dependent dissolution modeling techniques, but they were not observed when using model-independent techniques. This illustrates that the techniques are suitable for detecting and understanding excipient variability, but that, in this case, the product was still robust.


Assuntos
Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Excipientes/análise , Excipientes/química , Análise Multivariada
10.
Int J Pharm ; 543(1-2): 368-375, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29630933

RESUMO

Robust in vitro drug release behavior is an important feature of extended release (ER) hydrophilic matrix formulations for accurate prediction of in vivo drug release. In this study, ER hydrophilic matrix tablets of metoprolol tartrate were formulated using a high viscosity grade of hypromellose as a rate-limiting polymer. Expectedly, this formulation showed an undesirable initial burst release followed by controlled drug release. Application of a barrier membrane (BM) coating of ethylcellulose with a pore former (hypromellose) resulted in the elimination of the burst effect. The aim of this study was to investigate the robustness of in vitro metoprolol release from BM-coated hydrophilic matrix tablets by simulating the physicochemical properties of gastrointestinal fluids and mechanical stress in the fasted- and fed state human gastrointestinal (GI) tract. Uncoated and BM-coated matrices were subjected to various dissolution studies simulating the varying pH conditions and additional physicochemical parameters, and the mechanical stress that can be caused by GI motility during both fasted and fed state GI passage. The BM-coated formulation showed robust drug release without an initial burst in all test scenarios. BM-coated matrix formulations thus represent a very promising approach for obtaining a highly controlled and robust drug release from oral ER formulations.


Assuntos
Preparações de Ação Retardada/química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Secreções Intestinais/química , Metoprolol/química , Concentração Osmolar , Estresse Mecânico , Propriedades de Superfície , Comprimidos
11.
Mol Pharm ; 14(5): 1666-1680, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28296409

RESUMO

Temperature-controlled, solvent-free centrifugal spinning may be used as a means of rapid production of amorphous solid dispersions in the form of drug-loaded sucrose microfibers. However, due to the high content of amorphous sucrose in the formulations, such microfibers may be highly hygroscopic and unstable on storage. In this study, we explore both the effects of water uptake of the microfibers and the consequences of deliberate recrystallization for the associated dissolution profiles. The stability of sucrose microfibers loaded with three selected BCS class II model drugs (itraconazole (ITZ), olanzapine (OLZ), and piroxicam (PRX)) was investigated under four different relative humidity conditions (11, 33, 53, and 75% RH) at 25 °C for 8 months, particularly focusing on the effect of the highest level of moisture (75% RH) on the morphology, size, drug distribution, physical state, and dissolution performance of microfibers. While all samples were stable at 11% RH, at 33% RH the ITZ-sucrose system showed greater resistance against devitrification compared to the OLZ- and PRX-sucrose systems. For all three samples, the freshly prepared microfibers showed enhanced dissolution and supersaturation compared to the drug alone and physical mixes; surprisingly, the dissolution advantage was largely maintained or even enhanced (in the case of ITZ) following the moisture-induced recrystallization under 75% RH. Therefore, this study suggests that the moisture-induced recrystallization process may result in considerable dissolution enhancement compared to the drug alone, while overcoming the physical stability risks associated with the amorphous state.


Assuntos
Cristalização/métodos , Água/química , Benzodiazepinas/química , Estabilidade de Medicamentos , Itraconazol/química , Olanzapina , Piroxicam/química , Solubilidade , Sacarose/química
12.
Pharm Res ; 34(5): 941-956, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27633887

RESUMO

PURPOSE: Investigate the extended release behaviour of compacts containing mixtures of hydrophilic HPMC and PEO in hydrating media of differing ionic strengths. METHODS: The extended release behaviour of various HPMC:PEO compacts was investigated using dissolution testing, confocal microscopy and magnetic resonance imaging, with respect to polymer ratio and ionic strength of the hydrating media. RESULTS: Increasing HPMC content gave longer extended release times, but a greater sensitivity to high ionic dissolution environments. Increasing PEO content reduced this sensitivity. The addition of PEO to a predominantly HPMC matrix reduced release rate sensitivity to high ionic environments. Confocal microscopy of early gel layer development showed the two polymers appeared to contribute independently to gel layer structure whilst together forming a coherent and effective diffusion barrier. There was some evidence that poorly swollen HPMC particles added a tortuosity barrier to the gel layer in high ionic strength environments, resulting in prolonged extended release. MRI provides unique, non-invasive spatially resolved information from within the HPMC:PEO compacts that furthers our understanding of USP 1 and USP 4 dissolution data. CONCLUSIONS: Confocal microscopy and MRI data show that combinations of HPMC and PEO have advantageous extended release properties, in comparison with matrices containing a single polymer.


Assuntos
Preparações de Ação Retardada/química , Derivados da Hipromelose/química , Íons/química , Polietilenoglicóis/química , Interações Hidrofóbicas e Hidrofílicas , Concentração Osmolar , Polímeros/química , Sensibilidade e Especificidade , Solubilidade
13.
Eur J Pharm Biopharm ; 103: 84-94, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27012901

RESUMO

Solid dispersion technology represents a successful approach to addressing the bioavailability issues caused by the low aqueous solubility of many Biopharmaceutics Classification System (BCS) Class II drugs. In this study, the use of high-yield manufacture of fiber-based dispersion is explored as an alternative approach to monolith production methods. A temperature-controlled solvent-free centrifugal spinning process was used to produce sucrose-based microfibers containing the poorly water-soluble drugs olanzapine and piroxicam (both BCS Class II); these were successfully incorporated into the microfibers and the basic characteristics of fiber diameter, glassy behavior, drug loading capacity and drug-sucrose interaction assessment were measured. Scanning electron microscopy revealed that bead-free drug-loaded microfibers with homogenous morphology and diameter in the range of a few micrometers were prepared using our process. Differential scanning calorimetric and X-ray diffraction analyses showed that both drug and carrier were present in the amorphous state in the microfibers, although in the case of piroxicam-loaded microfibers, the presence of small amounts of crystalline drug was observed under polarized light microscopy and in Fourier transform infrared spectra. Drug dissolution performance was evaluated under both sink and non-sink conditions and was found to be significantly enhanced compared to the corresponding crystalline physical mixtures and pure drugs, with evidence of supersaturation behavior noted under non-sink conditions. This study has demonstrated that microfiber-based dispersions may be manufactured by the centrifugal spinning process and may possess characteristics that are favorable for the enhanced dissolution and oral absorption of drugs.


Assuntos
Benzodiazepinas/química , Centrifugação , Sacarose/química , Temperatura , Calibragem , Varredura Diferencial de Calorimetria , Microscopia Eletrônica de Varredura , Olanzapina , Difração de Pó , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
14.
Eur J Pharm Biopharm ; 100: 15-26, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26686647

RESUMO

The aim of the research was to investigate the complete process of pellet production in a Wurster fluidized bed coater in order to determine the main factors affecting the migration phenomenon of a soluble API through the ethycellulose film coating (Surelease®) and hence the long-term stability of the controlled release pellets. Guaifenesin (GFN), as BCS class I model drug, was layered on sugar spheres using a binder-polymer solution containing the dissolved GFN. The drug loaded pellets were then coated with Surelease®. The influence of drug loading (4.5-20.0% w/w), curing conditions (40-60°C and dynamic-static equipment), coating level (12-20% theoretical weight gain) and composition of the binder-layering solution (hypromellose versus Na alginate) on process efficiency (RSDW%), GFN content uniformity (RSDC%), GFN solid state (DSC and XRD) and pellet release profiles was evaluated. The effectiveness of the Surelease film was strongly affected by the ability of GFN to cross the coating layer and to recrystallize on the pellet surface. Results indicated that this behaviour was dependent on the polymer used in the binder-layering solution. Using hypromellose as polymer, GFN recrystallized on the coated pellet surface at both drug loadings. The curing step was necessary to stabilize the film effectiveness at the higher drug loading. Increasing the coating level delayed but did not prevent the GFN diffusion. Replacing hypromellose with Na alginate, reduced the migration of GFN through the film to a negligible amount even after six months of storage and the curing step was not necessary to achieve stable controlled release profiles over storage.


Assuntos
Celulose/análogos & derivados , Química Farmacêutica/métodos , Implantes de Medicamento/síntese química , Guaifenesina/síntese química , Celulose/síntese química , Celulose/farmacocinética , Implantes de Medicamento/farmacocinética , Liberação Controlada de Fármacos , Guaifenesina/farmacocinética , Difração de Raios X
15.
Sci Rep ; 5: 16352, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26553127

RESUMO

Mannitol is an essential excipient employed in orally disintegrating tablets due to its high palatability. However its fundamental disadvantage is its fragmentation during direct compression, producing mechanically weak tablets. The primary aim of this study was to assess the fracture behaviour of crystalline mannitol in relation to the energy input during direct compression, utilising ball milling as the method of energy input, whilst assessing tablet characteristics of post-milled powders. Results indicated that crystalline mannitol fractured at the hydrophilic (011) plane, as observed through SEM, alongside a reduction in dispersive surface energy. Disintegration times of post-milled tablets were reduced due to the exposure of the hydrophilic plane, whilst more robust tablets were produced. This was shown through higher tablet hardness and increased plastic deformation profiles of the post-milled powders, as observed with a lower yield pressure through an out-of-die Heckel analysis. Evaluation of crystal state using x-ray diffraction/differential scanning calorimetry showed that mannitol predominantly retained the ß-polymorph; however x-ray diffraction provided a novel method to calculate energy input into the powders during ball milling. It can be concluded that particle size reduction is a pragmatic strategy to overcome the current limitation of mannitol fragmentation and provide improvements in tablet properties.


Assuntos
Manitol/química , Comprimidos/química , Varredura Diferencial de Calorimetria , Cristalização , Composição de Medicamentos , Dureza , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Pós/química , Difração de Raios X
16.
Rev. colomb. ciencias quim. farm ; 44(3): 282-310, Sept.-Dec. 2015. ilus, graf, mapas, tab
Artigo em Espanhol | LILACS | ID: lil-781917

RESUMO

Se utilizaron dos polímeros hidrofílicos comúnmente empleados en la formulación de matrices de liberación extendida, hidroxipropil-metil-celulosa (HPMC, hipromelosa) y óxido de polietileno (PEO), junto con celulosa microcristalina y lactosa, con el objetivo de estudiar la cinética de liberación del diclofenaco sódico en los aparatos II y III de la USP, en un medio de disolución compendial y en medios biorrelevantes. La cinética de liberación predominante en el aparato II fue uno y en el aparato III, cero. El valor de las constantes n y k aplicando la ley del exponente, indicaron tanto para el aparato II como para el III, que no se presenta el efecto "burst" y que el mecanismo predominante en la liberación del fármaco, es la relajación y la erosión del polímero. Los resultados sugieren que la metodología de disolución en un medio biorrelevante es apropiada para discriminar entre formulaciones y para predecir el desempeño in vivo de tabletas de liberación extendida de diclofenaco sódico.


Two hydrophilic polymers commonly employed on the development of extended release products, hydroxypropyl-methyl-cellulose (HPMC, hypromellose) and polyethylene oxide (PEO) were formulated with microcrystalline cellulose or lactose in order to investigate the release kinetics of sodium diclofenac on USP apparatus II and III using a compendial or biorelevant media, respectively. The dominant release kinetic on apparatus II was first order and zero on apparatus III. The values of the kinetic constant (k) and the release exponent (n) from the Power Law Model indicated that there was no burst effect in none of the studied formulations, relaxation and polymer erosion was the dominant mechanism of drug release in both methods. The results suggest that biorelevant dissolution methodology is appropriate for the discrimination of formulations and prediction of in vivo performance of MR diclofenac sodium matrices.

17.
Eur J Pharm Biopharm ; 94: 1-10, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25960332

RESUMO

The importance of mannitol has increased recently as an emerging diluent for orodispersible dosage forms. The study aims to prepare spray dried mannitol retaining high porosity and mechanical strength for the development of orally disintegrating tablets (ODTs). Aqueous feed of d-mannitol (10% w/v) comprising ammonium bicarbonate, NH4HCO3 (5% w/v) as pore former was spray dried at inlet temperature of 110-170°C. Compacts were prepared at 151MPa and characterized for porosity, hardness and disintegration time. Particle morphology and drying mechanisms were studied using thermal (HSM, DSC and TGA) and polymorphic (XRD) methods. Tablet porosity increased from 0.20±0.002 for pure mannitol to 0.53±0.03 using fabricated porous mannitol. Disintegration time dropped by 50-77% from 135±5.29s for pure mannitol to 75.33±2.52-31.67±1.53s for mannitol 110-170°C. Hardness increased by 150% at 110°C (258.67±28.89N) and 30% at 150°C (152.70±10.58N) compared to pure mannitol tablets (104.17±1.70N). Increasing inlet temperature resulted in reducing tablet hardness due to generation of 'micro-sponge'-like particles exhibiting significant elastic recovery. Impact of mannitol polymorphism on plasticity/elasticity cannot be ruled out as a mixture of α and ß polymorphs formed upon spray drying.


Assuntos
Excipientes/química , Manitol/química , Tecnologia Farmacêutica/métodos , Bicarbonatos/química , Química Farmacêutica , Força Compressiva , Dureza , Cinética , Modelos Químicos , Tamanho da Partícula , Porosidade , Solubilidade , Comprimidos , Temperatura
18.
Drug Dev Ind Pharm ; 41(4): 623-30, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24564797

RESUMO

Extended release (ER) of water-soluble drugs from hydroxypropylmethylcellulose (HPMC) matrix mini-tablets (mini-matrices) is difficult to achieve due to the large surface area to volume ratio of the mini matrices. Therefore, the aims of this study were to control the release of a water-soluble drug (theophylline) from mini-matrices by applying ER ethylcellulose film coating (Surelease®), and to assess the effects of Surelease®:pore former (Opadry®) ratio and coating load on release rates. Mini-matrices containing 40%w/w HPMC K100M CR were coated with 100:0, 85:15, 80:20, 75:25 or 70:30 Surelease®:Opadry® to different coating weight gains (6-20%). Non-matrix mini-tablets were also produced and coated with 80:20 Surelease®:Opadry® to different coating weight gains. At low coating weight gains, nonmatrix mini-tablets released the entire drug within 0.5 h, while at high coating weight gains only a very small amount (<5%) of drug was released after 12 h. The gel formation of HPMC prevented disintegration of mini-matrices at low coating weight gains but contributed to rupture of the film even at high coating weight gains. As a result, drug release from mini-matrices was slower than that from nonmatrix mini-tablets at low coating weight gains, yet faster at high coating weight gains. An increase in the lag time of drug release from mini-matrices was observed as the concentration of Opadry® reduced or the coating weight gain increased. This study has demonstrated the possibility of extending the release of a water-soluble drug from HPMC mini-matrices by applying ER film coating with appropriate levels of pore former and coating weight gains to tailor the release rate.


Assuntos
Celulose/análogos & derivados , Sistemas de Liberação de Medicamentos , Excipientes/química , Derivados da Hipromelose/química , Inibidores de Fosfodiesterase/administração & dosagem , Polietilenoglicóis/química , Álcool de Polivinil/química , Polivinil/química , Teofilina/administração & dosagem , Celulose/química , Celulose/ultraestrutura , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/análise , Preparações de Ação Retardada/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Géis , Cinética , Microscopia Eletrônica de Varredura , Inibidores de Fosfodiesterase/análise , Inibidores de Fosfodiesterase/química , Porosidade , Solubilidade , Propriedades de Superfície , Comprimidos , Teofilina/análise , Teofilina/química
19.
Drug Dev Ind Pharm ; 41(1): 70-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24134563

RESUMO

The particle size of HPMC is a critical factor that can influence drug release rate from hydrophilic matrix systems. Percolation theory is a statistical tool which is used to study the disorder of particles in a lattice of a sample. The percolation threshold is the point at which a component is dominant in a cluster resulting in significant changes in drug release rates. Mini-tablets are compact dosage forms of 1.5-4 mm diameter, which have potential benefits in the delivery of drug to some patient groups such as pediatrics. In this study, the effect of HPMC particle size on hydrocortisone release and its associated percolation threshold for mini-tablets and tablets was assessed. For both mini-tablets and tablets, large polymer particles reduced tensile strength, but increased the drug release rate and the percolation threshold. Upon hydration, compacts with 45-125 µm HPMC particles formed a strong gel layer with low porosity, reducing hydrocortisone release rates. In comparison, faster drug release rates were obtained when 125-355 µm HPMC particles were used, due to the greater pore sizes that resulted in the formation of a weaker gel. Using 125-355 µm HPMC particles increased the percolation threshold for tablets and to a greater extent for mini-tablets. This work has demonstrated the importance of HPMC particle size in ER matrices, the effects of which are even more obvious for mini-tablets.


Assuntos
Liberação Controlada de Fármacos , Lactose/análogos & derivados , Metilcelulose/análogos & derivados , Tamanho da Partícula , Resistência à Tração , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Lactose/química , Lactose/farmacocinética , Metilcelulose/química , Metilcelulose/farmacocinética , Comprimidos
20.
AAPS PharmSciTech ; 15(5): 1049-59, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24848757

RESUMO

Hydrophilic matrix tablets are commonly used for extended release dosage forms. For low aqueous-solubility drugs, there may be challenges in modulation of release profiles and achieving consistent release in physiological conditions. To evaluate potential formulation strategies, matrix tablets of a low-soluble drug, hydrochlorothiazide, were developed using hypromellose and two fillers of different solubility, lactose (soluble) or partially pregelatinized maize starch (partially soluble). Additionally, application of an insoluble barrier membrane, aqueous ethylcellulose coating system, and a hydrophilic pore former onto matrix tablets was evaluated. Drug release from uncoated matrix tablets was variable at different agitation rates. Evaluation of tablets in bio-relevant media using physiologically relevant residence time indicated variable and higher initial release rate for uncoated matrices containing lactose but more robust behavior for tablets containing partially pregelatinized starch. Such in vitro behavior may lead to erratic drug release in vivo, when comparing fed versus fasted conditions. Dissolution profiles from barrier membrane-coated tablets showed initial delay, followed by zero-order release kinetics, with reduction or elimination of variability compared to uncoated matrices. Such reduced variability may mitigate mechanical effects of post-prandial stomach. Effects of coating weight gain and inclusion levels of pore former were evaluated and found to be critical in achieving robust and stable release profiles.


Assuntos
Celulose/análogos & derivados , Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Excipientes/química , Celulose/química , Diuréticos/administração & dosagem , Diuréticos/química , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Hidroclorotiazida/administração & dosagem , Hidroclorotiazida/química , Comprimidos com Revestimento Entérico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...