Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(28): 11963-11971, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37395374

RESUMO

Direct alcohol fuel cells have a long and promising future, which will require the development of highly active electrocatalysts for alcohol electrooxidation reactions. To this end, high-index facet nanomaterial-based electrocatalysts provide significant promise for the successful oxidation of alcohols. However, the fabrication and exploration of high-index facet nanomaterials are seldom reported, especially in electrocatalytic applications. Herein, we successfully synthesized a high index facet {711} Au 12 tip nanostructure for the first time using a single-chain cationic TDPB surfactant. Electrooxidation results demonstrate that a {711} high-index facet Au 12 tip exhibited much higher electrocatalytic activity (∼10-fold higher) than the {111} low-index facet Au nanoparticles (Au NPs) without being poisoned by CO under identical conditions. Besides, Au 12 tip nanostructures offer appreciable stability and durability. The high electrocatalytic activity with excellent CO tolerance is due to the spontaneous adsorption of the negatively charged -OH on the high-index facet Au 12 tip nanostars, as evidenced by the isothermal titration calorimetry (ITC) analysis. Our findings suggest that high-index facet Au nanomaterials are ideal candidate electrode materials for the electrooxidation reaction of ethanol in fuel cells.

2.
Nanoscale ; 14(31): 11323-11334, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35894176

RESUMO

Photo-induced electrochemical water splitting is a fascinating approach to overcome the present energy demands as well as environmental issues. To this end, near-infrared (NIR) photocatalysts stand out as promising candidates (where 53% of the solar light is NIR light) to solve the present energy crisis but the lack of NIR-activated photocatalysts has remained a great challenge for decades. Herein, for the first time, we report the synthesis of high-index faceted plasmonic Au nano-branched 12 tip nanostars, which can absorb the whole spectral region of electromagnetic radiation (UV-vis-NIR), for efficient water splitting. Moreover, the plasmonic hot spots on the Au 12 tip nanostars significantly promote the photoelectrochemical oxygen evolution reaction (OER) under NIR light (915 nm) with long-term stability. Remarkably, the Au 12 tip nanostars exhibit 250-fold enhancement of activity under 915 nm laser irradiation and 6.5-fold enhancement of activity under 532 nm laser irradiation, as compared to the Au NPs. Furthermore, the Finite-Difference Time-Domain (FDTD) study confirmed that the significant photoelectrochemical (PEC) enhancement in the NIR light region could be attributed to the hot-electron injection/plasmonic hot spot mechanism upon localized surface plasmonic resonance (LSPR) excitation. Overall, we anticipate that the present work would help to develop new NIR photoelectrocatalysts for meeting future energy demands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...