Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 114: 104173, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33160911

RESUMO

The application of biodegradable materials to stent design has the potential to transform coronary artery disease treatment. It is critical that biodegradable stents have sustained strength during degradation and vessel healing to prevent re-occlusion. Proper assessment of the impact of corrosion on the mechanical behaviour of potential biomaterials is important. Investigations within literature frequently implement simplified testing conditions to understand this behaviour and fail to consider size effects associated with strut thickness, or the increase in corrosion due to blood flow, both of which can impact material properties. A protocol was developed that utilizes micro-scale specimens, in conjunction with dynamic degradation, to assess the effect of corrosion on the mechanical properties of a novel Fe-316L material. Dynamic degradation led to increased specimen corrosion, resulting in a greater reduction in strength after 48 h of degradation in comparison to samples statically corroded. It was found that thicker micro-tensile samples (h > 200 µm) had a greater loss of strength in comparison to its thinner counterpart (h < 200 µm), due to increased corrosion of the thicker samples (203 MPa versus 260 MPa after 48 h, p = 0.0017). This investigation emphasizes the necessity of implementing physiologically relevant testing conditions, including dynamic corrosion and stent strut thickness, when evaluating potential biomaterials for biodegradable stent application.


Assuntos
Doença da Artéria Coronariana , Stents , Implantes Absorvíveis , Ligas , Materiais Biocompatíveis , Corrosão , Humanos , Teste de Materiais
2.
Acta Biomater ; 99: 479-494, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31449928

RESUMO

Biodegradable stents show promise to revolutionize coronary artery disease treatment. Its successful implementation in the global market remains limited due to the constraints of current generation biodegradable materials. Cold gas dynamic spraying (CGDS) has been proposed as a manufacturing approach to fabricate a metallic biodegradable amalgamate for stent application. Iron and 316L stainless steel powders are combined in a 4:1 ratio to create a novel biomaterial through cold spray. Cold spray processing however, produces a coating in a work hardened state, with limited ductility, which is a critical mechanical property in stent design. To this end, the influence of annealing temperature on the mechanical and corrosion performances of the proposed Fe-316L amalgamate is investigated. It was found that annealing at 1300 °C yielded a complex material microstructure, with an ultimate tensile strength of approximately 280 MPa and ductility of 23%. The static corrosion rate determined at this annealing temperature was equal to 0.22 mg cm-2 day-1, with multiple corrosion species identified within the degradation layers. Precipitates were observed throughout the microstructure, which appeared to accelerate the overall corrosion behaviour. It was shown that cold-sprayed Fe-316L has significant potential to be implemented in a clinical setting. STATEMENT OF SIGNIFICANCE: Biodegradable stents have potential to significantly improve treatment of coronary artery disease by decreasing or potentially eliminating late-term complications, including stent fracture and in-stent restenosis. Current generation polymer biodegradable stents have led to poorer patient outcomes in comparison to drug-eluting stents, however, and it is evident that metallic biomaterials are required, which have increased strength. To this end, a novel iron and stainless steel 316L biomaterial is proposed, fabricated through cold-gas dynamic spraying. This study analyses the effect of annealing on the Fe-316L biomaterial through corrosion, mechanical, and microstructural investigations. The quantitative data presented in this work suggests that Fe-316L, in its annealed condition, has the mechanical and corrosion properties necessary for biodegradable stent application.


Assuntos
Materiais Biocompatíveis , Teste de Materiais , Desenho de Prótese , Aço Inoxidável/química , Stents , Fosfatos de Cálcio/química , Temperatura Baixa , Doença da Artéria Coronariana/terapia , Corrosão , Humanos , Soluções Isotônicas/química , Microscopia Eletrônica de Varredura , Pressão , Estresse Mecânico , Resistência à Tração , Difração de Raios X
3.
Ann Biomed Eng ; 44(2): 404-18, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26384666

RESUMO

The implementation of biodegradable stents has the potential to revolutionize obstructive coronary artery disease treatment. Limitations still currently exist, however, that prevent biodegradable stents from replacing permanent metallic stents in the global market. The ideal combination of stent properties, including sufficient mechanical strength, controlled degradation, and biocompatibility, has yet to be realized. A novel manufacturing process is proposed that utilizes cold gas-dynamic spraying to fabricate a metal structure with significantly reduced grain size. Iron and stainless steel 316L are combined to form a novel amalgamate with enhanced mechanical strength and a controllable degradation rate, due to the resulting microgalvanic reaction. Flat specimens composed of iron and 316L are fabricated in various compositions, and mechanical and degradation tests were conducted. Femto laser techniques are utilized to produce stents composed of 80% Fe and 20% stainless steel 316L. The in vitro degradation behaviour of the stent is investigated using static and dynamic corrosion tests. It is shown that the corrosion rate can be adjusted to desired values, by varying the weight percentage of iron and stainless steel 316L within the amalgamate.


Assuntos
Ferro/química , Modelos Químicos , Aço Inoxidável/química , Stents , Implantes Absorvíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...