Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 1384, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654077

RESUMO

Many genetic diseases are caused by single-nucleotide polymorphisms. Base editors can correct these mutations at single-nucleotide resolution, but until recently, only allowed for transition edits, addressing four out of twelve possible DNA base substitutions. Here, we develop a class of C:G to G:C Base Editors to create single-base genomic transversions in human cells. Our C:G to G:C Base Editors consist of a nickase-Cas9 fused to a cytidine deaminase and base excision repair proteins. Characterization of >30 base editor candidates reveal that they predominantly perform C:G to G:C editing (up to 90% purity), with rAPOBEC-nCas9-rXRCC1 being the most efficient (mean 15.4% and up to 37% without selection). C:G to G:C Base Editors target cytidine in WCW, ACC or GCT sequence contexts and within a precise three-nucleotide window of the target protospacer. We further target genes linked to dyslipidemia, hypertrophic cardiomyopathy, and deafness, showing the therapeutic potential of these base editors in interrogating and correcting human genetic diseases.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Reparo do DNA/genética , Edição de Genes , Células HEK293 , Humanos , Motivos de Nucleotídeos/genética
2.
Appl Microbiol Biotechnol ; 104(2): 675-686, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31788712

RESUMO

Edible microalgae have potential as low-cost cell factories for the production and oral delivery of recombinant proteins such as vaccines, anti-bacterials and gut-active enzymes that are beneficial to farmed animals including livestock, poultry and fish. However, a major economic and technical problem associated with large-scale cultivation of microalgae, even in closed photobioreactors, is invasion by contaminating microorganisms. Avoiding this requires costly media sterilisation, aseptic techniques during set-up and implementation of 'crop-protection' strategies during cultivation. Here, we report a strain improvement approach in which the chloroplast of Chlamydomonas reinhardtii is engineered to allow oxidation of phosphite to its bio-available form: phosphate. We have designed a synthetic version of the bacterial gene (ptxD)-encoding phosphite oxidoreductase such that it is highly expressed in the chloroplast but has a Trp→Opal codon reassignment for bio-containment of the transgene. Under mixotrophic conditions, the growth rate of the engineered alga is unaffected when phosphate is replaced with phosphite in the medium. Furthermore, under non-sterile conditions, growth of contaminating microorganisms is severely impeded in phosphite medium. This, therefore, offers the possibility of producing algal biomass under non-sterile conditions. The ptxD gene can also serve as a dominant marker for genetic engineering of any C. reinhardtii strain, thereby avoiding the use of antibiotic resistance genes as markers and allowing the 'retro-fitting' of existing engineered strains. As a proof of concept, we demonstrate the application of our ptxD technology to a strain expressing a subunit vaccine targeting a major viral pathogen of farmed fish.


Assuntos
Biotecnologia/métodos , Chlamydomonas reinhardtii/enzimologia , Cloroplastos/enzimologia , Oxirredutases/metabolismo , Fosfatos/metabolismo , Fosfitos/metabolismo , Proteínas Recombinantes/metabolismo , Chlamydomonas reinhardtii/genética , Cloroplastos/genética , Meios de Cultura/química , Descontaminação/métodos , Engenharia Metabólica/métodos , Oxirredutases/genética , Proteínas Recombinantes/genética
3.
J Exp Bot ; 66(22): 6975-90, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26400987

RESUMO

Microalgae are a diverse group of single-cell photosynthetic organisms that include cyanobacteria and a wide range of eukaryotic algae. A number of microalgae contain high-value compounds such as oils, colorants, and polysaccharides, which are used by the food additive, oil, and cosmetic industries, among others. They offer the potential for rapid growth under photoautotrophic conditions, and they can grow in a wide range of habitats. More recently, the development of genetic tools means that a number of species can be transformed and hence used as cell factories for the production of high-value chemicals or recombinant proteins. In this article, we review exploitation use of microalgae with a special emphasis on genetic engineering approaches to develop cell factories, and the use of synthetic ecology approaches to maximize productivity. We discuss the success stories in these areas, the hurdles that need to be overcome, and the potential for expanding the industry in general.


Assuntos
Biotecnologia , Microalgas , Engenharia Genética , Microbiologia Industrial , Microalgas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...