Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Data ; 11(1): 164, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307869

RESUMO

miR-Blood is a high-quality, small RNA expression atlas for the major components of human peripheral blood (plasma, erythrocytes, thrombocytes, monocytes, neutrophils, eosinophils, basophils, natural killer cells, CD4+ T cells, CD8+ T cells, and B cells). Based on the purified blood components from 52 individuals, the dataset provides a comprehensive repository for the expression of 4971 small RNAs from eight non-coding RNA classes.


Assuntos
MicroRNAs , Humanos , Eosinófilos , Eritrócitos , MicroRNAs/sangue , Monócitos , Neutrófilos/metabolismo
2.
J Thorac Oncol ; 18(11): 1504-1523, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37437883

RESUMO

INTRODUCTION: Lung cancer remains the deadliest cancer in the world, and lung cancer survival is heavily dependent on tumor stage at the time of detection. Low-dose computed tomography screening can reduce mortality; however, annual screening is limited by low adherence in the United States of America and still not broadly implemented in Europe. As a result, less than 10% of lung cancers are detected through existing programs. Thus, there is a great need for additional screening tests, such as a blood test, that could be deployed in the primary care setting. METHODS: We prospectively recruited 1384 individuals meeting the National Lung Screening Trial demographic eligibility criteria for lung cancer and collected stabilized whole blood to enable the pipetting-free collection of material, thus minimizing preanalytical noise. Ultra-deep small RNA sequencing (20 million reads per sample) was performed with the addition of a method to remove highly abundant erythroid RNAs, and thus open bandwidth for the detection of less abundant species originating from the plasma or the immune cellular compartment. We used 100 random data splits to train and evaluate an ensemble of logistic regression classifiers using small RNA expression of 943 individuals, discovered an 18-small RNA feature consensus signature (miLung), and validated this signature in an independent cohort (441 individuals). Blood cell sorting and tumor tissue sequencing were performed to deconvolve small RNAs into their source of origin. RESULTS: We generated diagnostic models and report a median receiver-operating characteristic area under the curve of 0.86 (95% confidence interval [CI]: 0.84-0.86) in the discovery cohort and generalized performance of 0.83 in the validation cohort. Diagnostic performance increased in a stage-dependent manner ranging from 0.73 (95% CI: 0.71-0.76) for stage I to 0.90 (95% CI: 0.89-0.90) for stage IV in the discovery cohort and from 0.76 to 0.86 in the validation cohort. We identified a tumor-shed, plasma-bound ribosomal RNA fragment of the L1 stalk as a dominant predictor of lung cancer. The fragment is decreased after surgery with curative intent. In additional experiments, results of dried blood spot collection and sequencing revealed that small RNA analysis could potentially be conducted through home sampling. CONCLUSIONS: These data suggest the potential of a small RNA-based blood test as a viable alternative to low-dose computed tomography screening for early detection of smoking-associated lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Detecção Precoce de Câncer/métodos , Pulmão/patologia , Fumar , RNA
3.
Nature ; 608(7922): 360-367, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948708

RESUMO

Defining the transition from benign to malignant tissue is fundamental to improving early diagnosis of cancer1. Here we use a systematic approach to study spatial genome integrity in situ and describe previously unidentified clonal relationships. We used spatially resolved transcriptomics2 to infer spatial copy number variations in >120,000 regions across multiple organs, in benign and malignant tissues. We demonstrate that genome-wide copy number variation reveals distinct clonal patterns within tumours and in nearby benign tissue using an organ-wide approach focused on the prostate. Our results suggest a model for how genomic instability arises in histologically benign tissue that may represent early events in cancer evolution. We highlight the power of capturing the molecular and spatial continuums in a tissue context and challenge the rationale for treatment paradigms, including focal therapy.


Assuntos
Células Clonais , Variações do Número de Cópias de DNA , Instabilidade Genômica , Neoplasias , Análise Espacial , Células Clonais/metabolismo , Células Clonais/patologia , Variações do Número de Cópias de DNA/genética , Detecção Precoce de Câncer , Genoma Humano , Instabilidade Genômica/genética , Genômica , Humanos , Masculino , Modelos Biológicos , Neoplasias/genética , Neoplasias/patologia , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transcriptoma/genética
4.
JTO Clin Res Rep ; 3(8): 100369, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35880086

RESUMO

Introduction: Patients with advanced, non-oncogene-driven NSCLC with high programmed death-ligand 1 (PD-L1) expression are eligible for treatment with immunotherapy. There is, however, an urgent medical need for biomarkers identifying cases that require additional combination with chemotherapy. We previously uncovered a myeloid-based 5-microRNA (5-miRNA) signature that identified responders to immunotherapy in PD-L1 unstratified patients; however, its potential utility in treatment guidance for patients with PD-L1 high tumors remained unclear. Methods: We trained (n = 68) and validated (n = 56) a 5-miRNA multivariable Cox proportional hazards model predictive of overall survival on small RNA sequencing data of whole blood samples prospectively collected before the commencement of immunotherapy for stage IV NSCLC with PD-L1 tumor proportion score greater than or equal to 50%, treated with PD-1 inhibitor monotherapy (immunotherapy alone [IO]). Specificity was demonstrated in a control cohort treated with immunochemotherapy (ICT) (n = 31). Results: The revised 5-miRNA risk score (miRisk) stratified IO-treated patients and identified a high-risk group with significantly shorter overall survival (hazard ratio = 5.24, 95% confidence interval: 2.17-12.66, p < 0.001). There was a significant interaction between the miRisk score and type of treatment (IO or ICT, p = 0.036), indicating that the miRisk score may serve as a predictive biomarker for immunotherapy response. Furthermore, the miRisk score could identify a group of high-risk patients who may benefit from treatment with ICT as opposed to IO (hazard ratio = 0.35, 95% confidence interval: 0.15-0.82, p = 0.018). Conclusions: The miRisk score can distinguish a group of patients with PD-L1 high, stage IV NSCLC likely to benefit from adding chemotherapy to immunotherapy and may support treatment decisions as a blood-based complementary diagnostic.

5.
NPJ Precis Oncol ; 6(1): 19, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361874

RESUMO

Immunotherapies have recently gained traction as highly effective therapies in a subset of late-stage cancers. Unfortunately, only a minority of patients experience the remarkable benefits of immunotherapies, whilst others fail to respond or even come to harm through immune-related adverse events. For immunotherapies within the PD-1/PD-L1 inhibitor class, patient stratification is currently performed using tumor (tissue-based) PD-L1 expression. However, PD-L1 is an accurate predictor of response in only ~30% of cases. There is pressing need for more accurate biomarkers for immunotherapy response prediction. We sought to identify peripheral blood biomarkers, predictive of response to immunotherapies against lung cancer, based on whole blood microRNA profiling. Using three well-characterized cohorts consisting of a total of 334 stage IV NSCLC patients, we have defined a 5 microRNA risk score (miRisk) that is predictive of overall survival following immunotherapy in training and independent validation (HR 2.40, 95% CI 1.37-4.19; P < 0.01) cohorts. We have traced the signature to a myeloid origin and performed miRNA target prediction to make a direct mechanistic link to the PD-L1 signaling pathway and PD-L1 itself. The miRisk score offers a potential blood-based companion diagnostic for immunotherapy that outperforms tissue-based PD-L1 staining.

6.
Eur Urol Oncol ; 4(3): 358-369, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33888445

RESUMO

CONTEXT: Studies characterising genomic changes in prostate cancer (PCa) during natural progression have greatly increased our understanding of the disease. A better understanding of the evolutionary history of PCa would allow advances in diagnostics, prognostication, and novel therapies that together will improve patient outcomes. OBJECTIVE: To review the molecular heterogeneity of PCa and assess recent efforts to profile intratumoural heterogeneity and clonal evolution. EVIDENCE ACQUISITION: We screened a total of 1313 abstracts from PubMed published between 2009 and 2020, of which we reviewed 84 full-text articles. We excluded 49, resulting in 35 studies for qualitative analysis. EVIDENCE SYNTHESIS: In studies of primary disease (16 studies, 4793 specimens), there is a lack of consensus regarding the monoclonal or polyclonal origin of primary PCa. There is no consistent mutation giving rise to primary PCa. Detailed clonal analysis of primary PCa has been limited by current techniques. By contrast, clonal relationships between PCa metastases and a potentiating clone have been consistently identified (19 studies, 732 specimens). Metastatic specimens demonstrate consistent truncal genomic aberrations that suggest monoclonal metastatic progenitors. CONCLUSIONS: The relationship between the clonal dynamics of PCa and clinical outcomes needs further investigation. It is likely that this will provide a biological rationale for whether radical treatment of the primary tumour benefits patients with oligometastatic PCa. Future studies on the mutational burden in primary disease at single-cell resolution should permit the identification of clonal patterns underpinning the origin of lethal PCa. PATIENT SUMMARY: Prostate cancers arise in different parts of the prostate because of DNA mutations that occur by chance at different times. These cancer cells and their origin can be tracked by DNA mapping. In this review we summarise the state of the art and outline what further science is needed to provide the missing answers.


Assuntos
Neoplasias da Próstata , Genômica , Humanos , Masculino , Mutação , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética
7.
Future Oncol ; 17(9): 1083-1095, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33590768

RESUMO

Robot-assisted radical prostatectomy has become the standard of care for the removal of localized prostate cancer. Positive outcomes depend upon the precise removal of the prostate and associated tissue without damage to nearby structures. This process can be aided by fluorescence-guided surgery to enhance the visual contrast between different structures. Here the authors have conducted a systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to identify ten investigations into the use of fluorescence-guided surgery in robot-assisted radical prostatectomy. These studies used fluorescent tracers to identify structures, including the prostate, neurovascular bundle and lymph nodes. These studies demonstrate the safe and effective use of fluorescence-guided surgery in robot-assisted radical prostatectomy and pave the way for further developments in this field.


Assuntos
Corantes Fluorescentes/uso terapêutico , Prostatectomia , Neoplasias da Próstata/cirurgia , Procedimentos Cirúrgicos Robóticos , Fluorescência , Corantes Fluorescentes/metabolismo , Humanos , Período Intraoperatório , Linfonodos/metabolismo , Linfonodos/cirurgia , Masculino , Tratamentos com Preservação do Órgão , Próstata/inervação , Próstata/metabolismo , Próstata/cirurgia
8.
BJUI Compass ; 2(1): 13-23, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35474657

RESUMO

Context: Ductal adenocarcinoma (DAC) is relatively rare, but is nonetheless the second most common subtype of prostate cancer. First described in 1967, opinion is still divided regarding its biology, prognosis, and outcome. Objectives: To systematically interrogate the literature to clarify the epidemiology, diagnosis, management, progression, and survival statistics of DAC. Materials and methods: We conducted a literature search of five medical databases from inception to May 04 2020 according to PRISMA criteria using search terms "prostate ductal adenocarcinoma" OR "endometriod adenocarcinoma of prostate" and variations of each. Results: Some 114 studies were eligible for inclusion, presenting 2 907 170 prostate cancer cases, of which 5911 were DAC. [Correction added on 16 January 2021 after the first online publication: the preceding statement has been corrected in this current version.] DAC accounts for 0.17% of prostate cancer on meta-analysis (range 0.0837%-13.4%). The majority of DAC cases were admixed with predominant acinar adenocarcinoma (AAC). Median Prostate Specific Antigen at diagnosis ranged from 4.2 to 9.6 ng/mL in the case series.DAC was more likely to present as T3 (RR1.71; 95%CI 1.53-1.91) and T4 (RR7.56; 95%CI 5.19-11.01) stages, with far higher likelihood of metastatic disease (RR4.62; 95%CI 3.84-5.56; all P-values < .0001), compared to AAC. Common first treatments included surgery (radical prostatectomy (RP) or cystoprostatectomy for select cases) or radiotherapy (RT) for localized disease, and hormonal or chemo-therapy for metastatic disease. Few studies compared RP and RT modalities, and those that did present mixed findings, although cancer-specific survival rates seem worse after RP.Biochemical recurrence rates were increased with DAC compared to AAC. Additionally, DAC metastasized to unusual sites, including penile and peritoneal metastases. Where compared, all studies reported worse survival for DAC compared to AAC. Conclusion: When drawing conclusions about DAC it is important to note the heterogenous nature of the data. DAC is often diagnosed incidentally post-treatment, perhaps due to lack of a single, universally applied histopathological definition. As such, DAC is likely underreported in clinical practice and the literature. Poorer prognosis and outcomes for DAC compared to AAC merit further research into genetic composition, evolution, diagnosis, and treatment of this surprisingly common prostate cancer sub-type. Patient summary: Ductal prostate cancer is a rare but important form of prostate cancer. This review demonstrates that it tends to be more serious at detection and more likely to spread to unusual parts of the body. Overall survival is worse with this type of prostate cancer and urologists need to be aware of the presence of ductal prostate cancer to alter management decisions and follow-up.

9.
Sci Transl Med ; 8(340): 340ra74, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27225184

RESUMO

Atrial fibrillation (AF) is a growing public health burden, and its treatment remains a challenge. AF leads to electrical remodeling of the atria, which in turn promotes AF maintenance and resistance to treatment. Although remodeling has long been a therapeutic target in AF, its causes remain poorly understood. We show that atrial-specific up-regulation of microRNA-31 (miR-31) in goat and human AF depletes neuronal nitric oxide synthase (nNOS) by accelerating mRNA decay and alters nNOS subcellular localization by repressing dystrophin translation. By shortening action potential duration and abolishing rate-dependent adaptation of the action potential duration, miR-31 overexpression and/or disruption of nNOS signaling recapitulates features of AF-induced remodeling and significantly increases AF inducibility in mice in vivo. By contrast, silencing miR-31 in atrial myocytes from patients with AF restores dystrophin and nNOS and normalizes action potential duration and its rate dependency. These findings identify atrial-specific up-regulation of miR-31 in human AF as a key mechanism causing atrial dystrophin and nNOS depletion, which in turn contributes to the atrial phenotype begetting this arrhythmia. miR-31 may therefore represent a potential therapeutic target in AF.


Assuntos
Arritmias Cardíacas/metabolismo , Fibrilação Atrial/metabolismo , Distrofina/metabolismo , Átrios do Coração/metabolismo , MicroRNAs/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Animais , Regulação da Expressão Gênica , Cabras , Humanos , Camundongos , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Regulação para Cima
10.
Lancet ; 385 Suppl 1: S82, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26312904

RESUMO

BACKGROUND: The management of atrial fibrillation remains a challenge. This condition remodels atrial electrical properties, which promote resistance to treatment. Although remodelling has long been a therapeutic target in atrial fibrillation, its causes remain incompletely understood. We aimed to evaluate the role of miR-31-dependent reduction in dystrophin and neuronal nitric oxide synthase (nNOS, also known as NOS1) on atrial electrical properties and atrial fibrillation inducibility. METHODS: We recruited 258 patients (209 patients in sinus rhythm and 49 with permanent atrial fibrillation) from the John Radcliffe Hospital, Oxford, UK; written informed consent was obtained from each participant. We also used a goat model of pacing-induced atrial fibrillation (24 with atrial fibrillation vs 20 controls in normal sinus rythm) and nNos-knock-out mice (n=28 compared with 27 wild-type littermates). Gene expression of miR-31, dystrophin, and nNOS was assessed by quantitative RT-PCR; protein content was measured by immunoblotting; NOS activity was evaluated with high-performance liquid chromatography; action potential duration (APD) and rate dependent adaptation were assessed by single-cell patch-clamping, and atrial fibrillation inducibility was evaluated by transoesophageal atrial burst stimulation. FINDINGS: We found that atrial-specific upregulation of miR-31 in human atrial fibrillation caused dystrophin (DYS) translational repression and accelerated mRNA degradation of nNOS leading to a profound reduction in atrial DYS and nNOS protein content and in nitric oxide availability. In human atrial myocytes obtained from patients in sinus rhythm, nNOS inhibition was sufficient to recapitulate hallmark features of remodelling induced by atrial fibrillation, such as shortening of APD and loss of APD rate-dependency, but had no effect in patients with atrial fibrillation. In mice, nNos gene deletion or inhibition shortened atrial APD and increased atrial fibrillation inducibility in vivo. Inhibition of miR-31 in human atrial fibrillation recovered DYS and nNOS, and normalised APD and APD rate-dependency. Prevention of miR-31 binding to nNOS 3'UTR recovered both nNOS protein and gene expression but had no effect on the DYS protein or mRNA level (consistent with the mRNA degradation of nNOS by miR-31). Prevention of miR-31 binding to DYS 3'UTR increased DYS protein but not mRNA is consistent with translation repression of DYS by miR-31; recovery of DYS protein increased nNOS protein but not mRNA in keeping with a stabilising effect of DYS on nNOS protein. In goats, a reduction in dystrophin and nNOS protein content was associated with upregulation of miR-31 in the atria but not in the ventricles. INTERPRETATION: The findings suggest that atrial-specific upregulation of miR-31 in human atrial fibrillation is a key mechanism causing atrial loss of dystrophin and nNOS; this loss leads to the electrical phenotype induced by atrial fibrillation. FUNDING: British Heart Foundation (BHF) Programme grant (for BC and XL), BHF Centre of Excellence in Oxford (SR), Leducq Foundation (in part for BC and SR), the European Union's seventh Framework Programme Grant Agree.

11.
Nat Commun ; 5: 4640, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25135198

RESUMO

MicroRNA (miRNA) target recognition is largely dictated by short 'seed' sequences, and single miRNAs therefore have the potential to regulate a large number of genes. Understanding the contribution of specific miRNA-target interactions to the regulation of biological processes in vivo remains challenging. Here we use transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technologies to interrogate the functional relevance of predicted miRNA response elements (MREs) to post-transcriptional silencing in zebrafish and Drosophila. We also demonstrate an effective strategy that uses CRISPR-mediated homology-directed repair with short oligonucleotide donors for the assessment of MRE activity in human cells. These methods facilitate analysis of the direct phenotypic consequences resulting from blocking specific miRNA-MRE interactions at any point during development.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Desoxirribonucleases/genética , Endonucleases/genética , Engenharia Genética/métodos , MicroRNAs/genética , Elementos de Resposta/genética , Animais , Sequência de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Desoxirribonucleases/fisiologia , Drosophila , Endonucleases/fisiologia , Células HEK293 , Humanos , MicroRNAs/fisiologia , Dados de Sequência Molecular , Elementos de Resposta/fisiologia , Análise de Sequência , Ativação Transcricional/genética , Ativação Transcricional/fisiologia , Transfecção , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...