Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Cell Rep ; 42(7): 112682, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37355988

RESUMO

Human bone marrow (BM) plasma cells are heterogeneous, ranging from newly arrived antibody-secreting cells (ASCs) to long-lived plasma cells (LLPCs). We provide single-cell transcriptional resolution of 17,347 BM ASCs from five healthy adults. Fifteen clusters are identified ranging from newly minted ASCs (cluster 1) expressing MKI67 and high major histocompatibility complex (MHC) class II that progress to late clusters 5-8 through intermediate clusters 2-4. Additional ASC clusters include the following: immunoglobulin (Ig) M predominant (likely of extra-follicular origin), interferon responsive, and high mitochondrial activity. Late ASCs are distinguished by G2M checkpoints, mammalian target of rapamycin (mTOR) signaling, distinct metabolic pathways, CD38 expression, utilization of tumor necrosis factor (TNF)-receptor superfamily members, and two distinct maturation pathways involving TNF signaling through nuclear factor κB (NF-κB). This study provides a single-cell atlas and molecular roadmap of LLPC maturation trajectories essential in the BM microniche. Altogether, understanding BM ASC heterogeneity in health and disease enables development of new strategies to enhance protective ASCs and to deplete pathogenic ones.


Assuntos
Medula Óssea , Plasmócitos , Adulto , Humanos , Células Produtoras de Anticorpos/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Análise de Célula Única , Células da Medula Óssea
3.
J Pharmacol Sci ; 152(1): 1-21, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37059487

RESUMO

The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The infection is caused when Spike-protein (S-protein) present on the surface of SARS-CoV-2 interacts with human cell surface receptor, Angiotensin-converting enzyme 2 (ACE2). This binding facilitates SARS-CoV-2 genome entry into the human cells, which in turn causes infection. Since the beginning of the pandemic, many different therapies have been developed to combat COVID-19, including treatment and prevention. This review is focused on the currently adapted and certain other potential therapies for COVID-19 treatment, which include drug repurposing, vaccines and drug-free therapies. The efficacy of various treatment options is constantly being tested through clinical trials and in vivo studies before they are made medically available to the public.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Reposicionamento de Medicamentos , Tratamento Farmacológico da COVID-19 , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Ligação Proteica
4.
Methods Mol Biol ; 2621: 153-186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37041445

RESUMO

Chimerism is the unique state when cells from genetically different individuals coexist. Chimerism testing allows measuring the donor and recipient immune cell subsets in recipient blood and bone marrow following stem cell transplantation. Chimerism testing is the standard diagnostic test for monitoring engraftment dynamics and early relapse prediction in the recipient following stem cell transplantation. Chimerism testing is also helpful to detect graft-versus-host disease following liver transplantation. Herein, we describe a step-by-step procedure of an in-house-developed method assessing chimerism levels using fragment length analysis of short tandem repeats.


Assuntos
Quimerismo , Transplante de Células-Tronco Hematopoéticas , Humanos , Transplante de Medula Óssea , Medula Óssea , Repetições de Microssatélites
5.
Methods Mol Biol ; 2621: 187-213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37041446

RESUMO

Chimerism is an unusual state in which a person's body comprises cells from genetically different people. Chimerism testing allows monitoring for the relative proportion of recipient and donor-derived cell subsets in recipient blood and bone marrow. In the bone marrow transplant setting, chimerism testing is the standard diagnostic tool for early detection of graft rejection and the risk of malignant disease relapse. Chimerism testing enables the identification of patients with increased risk for recurrence of the underlying disease. Herein, we describe a step-by-step technical procedure of a novel, commercially available, next-generation sequencing-based chimerism testing method for use in the clinical laboratory.


Assuntos
Quimerismo , Transplante de Células-Tronco Hematopoéticas , Humanos , Linhagem da Célula , Transplante de Células-Tronco Hematopoéticas/métodos , Transplante de Medula Óssea , Sequenciamento de Nucleotídeos em Larga Escala
6.
Hum Immunol ; 84(4): 278-285, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36868898

RESUMO

Although rare, infection and vaccination can result in antibodies to human leukocyte antigens (HLA). We analyzed the effect of SARS-CoV-2 infection or vaccination on HLA antibodies in waitlisted renal transplant candidates. Specificities were collected and adjudicated if the calculated panel reactive antibodies (cPRA) changed after exposure. Of 409 patients, 285 (69.7 %) had an initial cPRA of 0 %, and 56 (13.7 %) had an initial cPRA > 80 %. The cPRA changed in 26 patients (6.4 %), 16 (3.9 %) increased, and 10 (2.4 %) decreased. Based on cPRA adjudication, cPRA differences generally resulted from a small number of specificities with subtle fluctuations around the borderline of the participating centers' cutoff for unacceptable antigen listing. All five COVID recovered patients with an increased cPRA were female (p = 0.02). In summary, exposure to this virus or vaccine does not increase HLA antibody specificities and their MFI in approximately 99 % of cases and 97 % of sensitized patients. These results have implications for virtual crossmatching at the time of organ offer after SARS-CoV-2 infection or vaccination, and these events of unclear clinical significance should not influence vaccination programs.


Assuntos
COVID-19 , Transplante de Rim , Humanos , Feminino , Masculino , Doadores de Tecidos , Teste de Histocompatibilidade/métodos , Transplante de Rim/métodos , SARS-CoV-2 , Anticorpos , Antígenos HLA , Vacinação , Isoanticorpos
7.
Sci Rep ; 13(1): 2351, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759535

RESUMO

The high magnitude zoonotic event has caused by Severe Acute Respitarory Syndrome CoronaVirus-2 (SARS-CoV-2) is Coronavirus Disease-2019 (COVID-19) epidemics. This disease has high rate of spreading than mortality in humans. The human receptor, Angiotensin-Converting Enzyme 2 (ACE2), is the leading target site for viral Spike-protein (S-protein) that function as binding ligands and are responsible for their entry in humans. The patients infected with COVID-19 with comorbidities, particularly cancer patients, have a severe effect or high mortality rate because of the suppressed immune system. Nevertheless, there might be a chance wherein cancer patients cannot be infected with SARS-CoV-2 because of mutations in the ACE2, which may be resistant to the spillover between species. This study aimed to determine the mutations in the sequence of the human ACE2 protein and its dissociation with SARS-CoV-2 that might be rejecting viral transmission. The in silico approaches were performed to identify the impact of SARS-CoV-2 S-protein with ACE2 mutations, validated experimentally, occurred in the patient, and reported in cell lines. The identified changes significantly affect SARS-CoV-2 S-protein interaction with ACE2, demonstrating the reduction in the binding affinity compared to SARS-CoV. The data presented in this study suggest ACE2 mutants have a higher and lower affinity with SARS-Cov-2 S-protein to the wild-type human ACE2 receptor. This study would likely be used to report SARS-CoV-2 resistant ACE2 mutations and can be used to design active peptide development to inactivate the viral spread of SARS-CoV-2 in humans.


Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Ligação Proteica/genética , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Mutação , Proteínas de Transporte/metabolismo
8.
Nat Biotechnol ; 41(5): 717-727, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36593395

RESUMO

Allogeneic cell therapeutics for cancer therapy or regenerative medicine are susceptible to antibody-mediated killing, which diminishes their efficacy. Here we report a strategy to protect cells from antibody-mediated killing that relies on engineered overexpression of the IgG receptor CD64. We show that human and mouse iPSC-derived endothelial cells (iECs) overexpressing CD64 escape antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity from IgG antibodies in vitro and in ADCC-enabled mice. When CD64 expression was combined with hypoimmune genetic modifications known to protect against cellular immunity, B2M-/-CIITA-/- CD47/CD64-transgenic iECs were resistant to both IgG antibody-mediated and cellular immune killing in vitro and in humanized mice. Mechanistic studies demonstrated that CD64 or its intracellularly truncated analog CD64t effectively capture monomeric IgG and occupy their Fc, and the IgG bind and occupy their target antigens. In three applications of the approach, human CD64t-engineered thyroid epithelial cells, pancreatic beta cells and CAR T cells withstood clinically relevant levels of graft-directed antibodies and fully evaded antibody-mediated killing.


Assuntos
Células Endoteliais , Receptores de IgG , Humanos , Animais , Camundongos , Células Endoteliais/metabolismo , Receptores de IgG/genética , Receptores de IgG/metabolismo , Imunoglobulina G/genética , Citotoxicidade Celular Dependente de Anticorpos , Imunidade Celular
9.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711623

RESUMO

Human bone marrow (BM) plasma cells are heterogeneous, ranging from newly arrived antibody-secreting cells (ASC) to long-lived plasma cells (LLPC). We provide single cell transcriptional resolution of 17,347 BM ASC from 5 healthy adults. Fifteen clusters were identified ranging from newly minted ASC (cluster 1) expressing MKI67 and high MHC Class II that progressed to late clusters 5-8 through intermediate clusters 2-4. Additional clusters included early and late IgM-predominant ASC of likely extra-follicular origin; IFN-responsive; and high mitochondrial activity ASC. Late ASCs were distinguished by differences in G2M checkpoints, MTOR signaling, distinct metabolic pathways, CD38 expression, and utilization of TNF-receptor superfamily members. They mature through two distinct paths differentiated by the degree of TNF signaling through NFKB. This study provides the first single cell resolution atlas and molecular roadmap of LLPC maturation, thereby providing insight into differentiation trajectories and molecular regulation of these essential processes in the human BM microniche. This information enables investigation of the origin of protective and pathogenic antibodies in multiple diseases and development of new strategies targeted to the enhancement or depletion of the corresponding ASC. One Sentence Summary: The single cell transcriptomic atlas of human bone marrow plasma cell heterogeneity shows maturation of class-switched early and late subsets, specific IgM and Interferon-driven clusters, and unique heterogeneity of the late subsets which encompass the long-lived plasma cells.

10.
Am J Transplant ; 23(1): 37-44, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695619

RESUMO

Acute and chronic rejections limit the long-term survival after lung transplant. Pulmonary antibody-mediated rejection (AMR) is an incompletely understood driver of long-term outcomes characterized by donor-specific antibodies (DSAs), innate immune infiltration, and evidence of complement activation. Natural killer (NK) cells may recognize DSAs via the CD16 receptor, but this complement-independent mechanism of injury has not been explored in pulmonary AMR. CD16+ NK cells were quantified in 508 prospectively collected bronchoalveolar lavage fluid samples from 195 lung transplant recipients. Associations between CD16+ NK cells and human leukocyte antigen mismatches, DSAs, and AMR grade were assessed by linear models adjusted for participant characteristics and repeat measures. Cox proportional hazards models were used to assess CD16+ NK cell association with chronic lung allograft dysfunction and survival. Bronchoalveolar lavage fluid CD16+ NK cell frequency was associated with increasing human leukocyte antigens mismatches and increased AMR grade. Although NK frequencies were similar between DSA+ and DSA- recipients, CD16+ NK cell frequencies were greater in recipients with AMR and those with concomitant allograft dysfunction. CD16+ NK cells were associated with long-term graft dysfunction after AMR and decreased chronic lung allograft dysfunction-free survival. These data support the role of CD16+ NK cells in pulmonary AMR.


Assuntos
Anticorpos , Rejeição de Enxerto , Humanos , Aloenxertos , Lavagem Broncoalveolar , Rejeição de Enxerto/imunologia , Antígenos HLA , Isoanticorpos , Células Matadoras Naturais , Pulmão , Receptores de IgG
11.
Sci Rep ; 12(1): 17237, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241658

RESUMO

Killer-cell immunoglobulin-like receptors (KIR) are essential for acquiring natural killer (NK) cell effector function, which is modulated by a balance between the net input of signals derived from inhibitory and activating receptors through engagement by human leukocyte antigen (HLA) class I ligands. KIR and HLA loci are polygenic and polymorphic and exhibit substantial variation between individuals and populations. We attempted to investigate the contribution of KIR complex and HLA class I ligands to the genetic predisposition to lung cancer in the native population of southern Iran. We genotyped 16 KIR genes for a total of 232 patients with lung cancer and 448 healthy controls (HC), among which 85 patients and 178 HCs were taken into account for evaluating combined KIR-HLA associations. KIR2DL2 and 2DS2 were increased significantly in patients than in controls, individually (OR 1.63, and OR 1.42, respectively) and in combination with HLA-C1 ligands (OR 1.99, and OR 1.93, respectively). KIR3DS1 (OR 0.67) and 2DS1 (OR 0.69) were more likely presented in controls in the absence of their relative ligands. The incidence of CxTx subset was increased in lung cancer patients (OR 1.83), and disease risk strikingly increased by more than fivefold among genotype ID19 carriers (a CxTx genotype that carries 2DL2 in the absence of 2DS2, OR 5.92). We found that genotypes with iKIRs > aKIRs (OR 1.67) were more frequently presented in lung cancer patients. Additionally, patients with lung cancer were more likely to carry the combination of CxTx/2DS2 compared to controls (OR 2.04), and iKIRs > aKIRs genotypes in the presence of 2DL2 (OR 2.05) increased the likelihood of lung cancer development. Here we report new susceptibility factors and the contribution of KIR and HLA-I encoding genes to lung cancer risk, highlighting an array of genetic effects and disease setting which regulates NK cell responsiveness. Our results suggest that inherited KIR genes and HLA-I ligands specifying the educational state of NK cells can modify lung cancer risk.


Assuntos
Neoplasias Pulmonares , Receptores KIR , Frequência do Gene , Genótipo , Antígenos HLA/genética , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunoglobulinas/genética , Ligantes , Neoplasias Pulmonares/genética , Receptores KIR/genética
12.
Front Cell Dev Biol ; 10: 664261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399522

RESUMO

Hematopoietic stem cells (HSCs) possess two important properties such as self-renewal and differentiation. These properties of HSCs are maintained through hematopoiesis. This process gives rise to two subpopulations, long-term and short-term HSCs, which have become a popular convention for treating various hematological disorders. The clinical application of HSCs is bone marrow transplant in patients with aplastic anemia, congenital neutropenia, sickle cell anemia, thalassemia, or replacement of damaged bone marrow in case of chemotherapy. The self-renewal attribute of HSCs ensures long-term hematopoiesis post-transplantation. However, HSCs need to be infused in large numbers to reach their target site and meet the demands since they lose their self-renewal capacity after a few passages. Therefore, a more in-depth understanding of ex vivo HSCs expansion needs to be developed to delineate ways to enhance the self-renewability of isolated HSCs. The multifaceted self-renewal process is regulated by factors, including transcription factors, miRNAs, and the bone marrow niche. A developed classical hierarchical model that outlines the hematopoiesis in a lineage-specific manner through in vivo fate mapping, barcoding, and determination of self-renewal regulatory factors are still to be explored in more detail. Thus, an in-depth study of the self-renewal property of HSCs is essentially required to be utilized for ex vivo expansion. This review primarily focuses on the Hematopoietic stem cell self-renewal pathway and evaluates the regulatory molecular factors involved in considering a targeted clinical approach in numerous malignancies and outlining gaps in the current knowledge.

13.
Front Genet ; 13: 845474, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273641

RESUMO

Background: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection causes coronavirus disease-2019 (COVID-19) in some individuals, while the majority remain asymptomatic. Natural killer (NK) cells play an essential role in antiviral defense. NK cell maturation and function are regulated mainly by highly polymorphic killer cell immunoglobulin-like receptors (KIR) and cognate HLA class I ligands. Herein, we tested our hypothesis that the individualized KIR and HLA class I ligand combinations that control NK cell function determine the outcome of SARS-CoV-2 infection. Methods: We characterized KIR and HLA genes in 200 patients hospitalized for COVID-19 and 195 healthy general population controls. Results: The KIR3DL1+HLA-Bw4+ [Odds ratio (OR) = 0.65, p = 0.03] and KIR3DL2+HLA-A3/11+ (OR = 0.6, p = 0.02) combinations were encountered at significantly lower frequency in COVID-19 patients than in the controls. Notably, 40% of the patients lacked both of these KIR+HLA+ combinations compared to 24.6% of the controls (OR = 2.04, p = 0.001). Additionally, activating receptors KIR2DS1+KIR2DS5+ are more frequent in patients with severe COVID-19 than patients with mild disease (OR = 1.8, p = 0.05). Individuals carrying KIR2DS1+KIR2DS5+ genes but missing either KIR3DL1+HLA-Bw4+ combination (OR = 1.73, p = 0.04) or KIR3DL2+HLA-A3/11+ combination (OR = 1.75, p = 0.02) or both KIR3DL1+HLA-Bw4+ and KIR2DL2+HLA-A3/11+ combinations (OR = 1.63, p = 0.03) were more frequent in the COVID-19 cohort compared to controls. Conclusions: The absence of KIR3DL1+HLA-Bw4+ and KIR3DL2+HLA-A3/11+ combinations presumably yields inadequate NK cell maturation and reduces anti-SARS-CoV-2 defense, causing COVID-19. An increased frequency of KIR2DS1+KIR2DS5+ in severe COVID-19 patients suggests vigorous NK cell response triggered via these activating receptors and subsequent production of exuberant inflammatory cytokines responsible for severe COVID-19. Our results demonstrate that specific KIR-HLA combinations that control NK cell maturation and function are underlying immunogenetic variables that determine the dual role of NK cells in mediating beneficial antiviral and detrimental pathologic action. These findings offer a framework for developing potential host genetic biomarkers to distinguish individuals prone to COVID-19.

14.
Hum Immunol ; 83(5): 458-466, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35193787

RESUMO

Comprehensive and accurate human leukocyte antigen (HLA) typing within a short turnaround time is a crucial initial step for allocating deceased donor organs for transplantation. Erroneous HLA typing of deceased donors can be catastrophic and result in recipient death, failed transplant, and organ wastage due to inappropriately matched donors. The real-time polymerase chain reaction method is widely used as the sole method for HLA typing of deceased donors because of its simplified workflow. Herein, we have reported cases of four deceased donors showing discrepant HLA typing discovered using two independent methods concurrently. The HLA typing of these donors could have been erroneously reported if a single method had been used, which would have profound patient safety implications. In one case, the drop out of HLA-DR7 using a single method could have resulted in harmful organ allocation if the organ was transplanted after a virtual crossmatch to a sensitized candidate showing strong donor-specific HLA-DR7 antibodies. In conclusion, this case series suggests that concurrent dual typing is essential for accurate HLA typing of deceased donors. This strategy is vital because precise HLA typing is critical for accurate virtual crossmatching, which facilitates continuous distribution and broader geographic sharing of the deceased donor organ.


Assuntos
Antígenos HLA , Segurança do Paciente , Antígenos HLA/genética , Antígeno HLA-DR7 , Teste de Histocompatibilidade/métodos , Humanos , Doadores de Tecidos
15.
Ann Transplant ; 26: e934175, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848674

RESUMO

BACKGROUND Solid-phase assays to investigate the complement-activating capacity of HLA antibodies have been utilized to optimize organ allocation and improve transplant outcomes. The clinical utility of C1q/C3d-binding characteristics of de novo donor-specific anti-HLA antibodies (dnDSA) associated with C4d-positive antibody-mediated rejection (C4d⁺ AMR) in kidney transplants (KTx) has not been defined. MATERIAL AND METHODS Sera from 120 KTx recipients that had dnDSA concurrent with protocol/cause biopsy (median 3.8 years after transplantation) were screened for C1q and C3d-binding dnDSA. The difference in the incidence of C4d⁺ AMR between recipients with and without C1q/C3d-binding dnDSA was assessed. RESULTS Over 86% of dnDSAs were class II antibodies. The immunodominant dnDSAs characterized by the highest median fluorescence intensity (MFI) in most recipients were HLA-DQ antibodies (67%). Most recipients (62%, n=74) had either C1q⁺ (56%), C3d⁺ (48%), or both C1q⁺C3d⁺ (41.2%) dnDSA, while the remaining 38% were negative for both C1q and C3d. Of those with C1q⁺/C3d⁺ dnDSA, 87% had high-MFI IgG (MFI=14144±5363 and 13932±5278, respectively), while 65% of C1q⁻C3d⁻ dnDSA had low-MFI IgG (MFI=5970±3347). The incidence of C4d+ AMR was significantly higher in recipients with C1q⁺ (66%), C3d+ (74%), and C1q⁺C3d⁺ (72%) dnDSA than in those with C1q⁻C3d⁻ dnDSA (30%) recipients. Recipients with C3d⁺/C1q⁺ dnDSA had higher C4d⁺ scores on biopsy. CONCLUSIONS C1q⁺/C3d⁺ dnDSA were associated with C4d⁺ AMR and high-IgG MFI. Our data call into question the predictive utility of C1q/C3d-binding assays in identifying KTx recipients at risk of allograft failure. In conclusion, IgG MFI is sufficient for clinical management, and the C1q/C3d-assays with added cost do not provide any additional information.


Assuntos
Complemento C1q , Transplante de Rim , Rejeição de Enxerto , Antígenos HLA , Humanos , Isoanticorpos , Estudos Retrospectivos , Transplantados
16.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34272304

RESUMO

BACKGROUND: Phase IIb clinical trial with isatuximab (Isa)-lenalidomide (Len)-dexamethasone (Dex) showed an improved progression-free survival (PFS) in patients with relapsed or refractory multiple myeloma (RRMM), but the efficacy varied by patient. Antibody-dependent cell-mediated cytotoxicity (ADCC) by natural killer (NK) cells plays a crucial role in arbitrating antitumor activities of therapeutic-antibodies. We tested if patient-specific genetic makeup known to set NK cell functional threshold influence response to Isa-Len-Dex therapy. METHODS: We characterized 57 patients with RRMM receiving Isa-Len-Dex for polymorphisms of killer-cell immunoglobulin-like receptors (KIR), human leukocyte antigen (HLA) class I, and FCGR3A loci. In vitro ADCC assay, coincubating primary NK cells expressing specific KIR repertoire with multiple myeloma cell lines (MM cells) expressing selected HLA class I ligands, was used to confirm the identified genetic correlatives of clinical response. RESULTS: Patients with KIR3DL2+ and its cognate-ligand HLA-A3/11+ had superior PFS than patients missing this combination (HR=0.43; p=0.02), while patients carrying KIR2DL1+ and HLA-C2C2+ compared with to patients missing this pair showed short PFS (HR=3.54; p=0.05). Patients with KIR3DL2+ and HLA-A3/11+ plus high-affinity FCGR3A-158V allele showed the most prolonged PFS (HR=0.35; p=0.007). Consistent with these clinical data, mechanistic experiments demonstrated that NK cells expressing KIR3DL2 trigger greater ADCC when MM cells express HLA-A3/11. Inversely, NK cells expressing KIR2DL1 do not kill if MM cells express the HLA-C2C2 ligand. NK cells expressing high-affinity FCGR3A-158VV-induced greater ADCC compared with those with low-affinity FCGR3A-158FF. CONCLUSIONS: Our results suggest that KIR3DL2+ and HLA-A3/11+ with FCGR3A-158V markers lead to enhanced Isa-dependent NK-mediated cytolysis against MM cells and results in improved PFS in patients with RRMM treated by Isa-Len-Dex. Moreover, the presence of KIR2DL1+ and HLA-C2C2+ identifies patients who may have a lower response to Isa-Len-Dex therapy linked to a reduced NK-mediated ADCC. These biomarkers could potentially identify, via precision medicine, patients more likely to respond to Isa-Len-Dex immunotherapy. TRIAL REGISTRATION NUMBER: NCT01749969.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Mieloma Múltiplo/tratamento farmacológico , Anticorpos Monoclonais Humanizados/farmacologia , Humanos
17.
Hum Immunol ; 82(8): 581-587, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33980471

RESUMO

Hematopoietic stem cell transplantation (HSCT) from HLA-matched donors significantly decreases the risks of graft-rejection and graft-versus-host disease. Long-range PCR- amplicon-based next-generation sequencing (NGS) is increasingly used as a standalone method in clinical laboratories to determine HLA compatibility for HSCT and solid-organ transplantation. We hypothesized that an allelic dropout is a frequent event in the long-range PCR amplicon-based NGS HLA typing method. To test the hypothesis, we typed 4,006 samples concurrently using a commercially available long-range PCR amplicon-based NGS-typing and short exon-specific amplicon-based reverse sequence-specific oligonucleotide (rSSO) methods. The concordance between the NGS and rSSO typing results was 100% at HLA-A, -B, -C, -DRB1, -DRB3, -DRB5, -DQA1, DPA1 loci. However, 4.5% of the samples (179/4006) showed allelic-dropouts at one of the other three loci: HLA-DRB4 (3.9%), HLA-DPB1 (0.4%), and HLA-DQB1*(0.15%). The allelic-dropouts are not associated with specific haplotypes, and some dropouts can be reagent lot-specific. Although DRB1-DRB3/4/5-DQB1 linkages help to diagnose these allelic-dropouts in some cases, the rSSO typing was crucial to identify the dropouts in DQB1 and DPB1 loci. These results uncover the critical limitations of using long-range PCR amplicon-based NGS as a standalone method in clinical histocompatibility laboratories and advocate the need for strategies to diagnose and resolve allelic-dropouts.


Assuntos
Alelos , Antígenos HLA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Teste de Histocompatibilidade/métodos , Oligonucleotídeos , Reação em Cadeia da Polimerase/métodos , Haplótipos , Transplante de Células-Tronco Hematopoéticas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Teste de Histocompatibilidade/normas , Humanos , Reação em Cadeia da Polimerase/normas
18.
Sci Rep ; 11(1): 7932, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846431

RESUMO

Human leukocyte antigen (HLA) class I-specific killer-cell immunoglobulin-like receptors (KIR) regulate natural killer (NK) cell function in eliminating malignancy. Breast cancer (BC) patients exhibit reduced NK-cytotoxicity in peripheral blood. To test the hypothesis that certain KIR-HLA combinations impairing NK-cytotoxicity predispose to BC risk, we analyzed KIR and HLA polymorphisms in 162 women with BC and 278 controls. KIR-Bx genotypes increased significantly in BC than controls (83.3% vs. 71.9%, OR 1.95), and the increase was more pronounced in advanced-cancer (OR 5.3). No difference was observed with inhibitory KIR (iKIR) and HLA-ligand combinations. The activating KIR (aKIR) and HLA-ligand combinations, 2DS1 + C2 (OR 2.98) and 3DS1 + Bw4 (OR 2.6), were significantly increased in advanced-BC. All patients with advanced-cancer carrying 2DS1 + C2 or 3DS1 + Bw4 also have their iKIR counterparts 2DL1 and 3DL1, respectively. Contrarily, the 2DL1 + C2 and 3DL1 + Bw4 pairs without their aKIR counterparts are significantly higher in controls. These data suggest that NK cells expressing iKIR to the cognate HLA-ligands in the absence of putative aKIR counterpart are instrumental in antitumor response. These data provide a new framework for improving the utility of genetic risk scores for individualized surveillance.


Assuntos
Neoplasias da Mama/imunologia , Antígenos HLA-B/metabolismo , Antígenos HLA-C/metabolismo , Receptores KIR/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Feminino , Haplótipos/genética , Heterozigoto , Humanos , Ligantes , Estadiamento de Neoplasias , Fatores de Risco
19.
Hum Immunol ; 82(8): 568-573, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33910707

RESUMO

HLA antibodies are typically produced after exposure to transplanted tissue, pregnancy, and blood products. Sensitization delays access to transplantation and preclude utilization of donor organs. Infections and vaccinations have also been reported to result in HLA antibody formation. It is not known if patients develop HLA antibodies after infection with SARS-CoV-2. Here we analyzed a series of eighteen patients waiting for kidney transplantation who had symptomatic COVID-19 disease and recovered. None of the patients in this initial series developed de novo HLA antibodies. Notably, there was no increase in preexisting HLA antibodies in four highly sensitized patients with a CPRA > 80%. These preliminary data suggest that there may not be a need to repeat HLA antibody testing or perform a physical crossmatch on admission serum before kidney transplant for COVID-19 recovered patients. Data from a large number of patients with different demographics needed.


Assuntos
COVID-19/imunologia , Antígenos HLA/imunologia , Histocompatibilidade , Isoanticorpos/sangue , Transplante de Rim , SARS-CoV-2/imunologia , Listas de Espera , Adulto , Idoso , COVID-19/diagnóstico , COVID-19/terapia , COVID-19/virologia , Bases de Dados Factuais , Feminino , Teste de Histocompatibilidade , Interações Hospedeiro-Patógeno , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , SARS-CoV-2/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...