Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 104(5): 1000-1009.e7, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31668844

RESUMO

Manual dexterity requires proprioceptive feedback about the state of the hand. To date, study of the neural basis of proprioception in the cortex has focused primarily on reaching movements to the exclusion of hand-specific behaviors such as grasping. To fill this gap, we record both time-varying hand kinematics and neural activity evoked in somatosensory and motor cortices as monkeys grasp a variety of objects. We find that neurons in the somatosensory cortex, as well as in the motor cortex, preferentially track time-varying postures of multi-joint combinations spanning the entire hand. This contrasts with neural responses during reaching movements, which preferentially track time-varying movement kinematics of the arm, such as velocity and speed of the limb, rather than its time-varying postural configuration. These results suggest different representations of arm and hand movements suited to the different functional roles of these two effectors.


Assuntos
Mãos/fisiologia , Propriocepção/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Sensório-Motor/fisiologia , Animais , Fenômenos Biomecânicos , Macaca mulatta , Masculino , Neurônios/fisiologia
2.
Front Genet ; 9: 534, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30473705

RESUMO

Background: The diagnosis of autism spectrum disorder (ASD) relies on behavioral assessment. Efforts to define biomarkers of ASD have not resulted in an objective, reliable test. Studies of RNA levels in ASD have demonstrated potential utility, but have been limited by a focus on single RNA types, small sample sizes, and lack of developmental delay controls. We hypothesized that a saliva-based poly-"omic" RNA panel could objectively distinguish children with ASD from their neurotypical peers and children with non-ASD developmental delay. Methods: This multi-center cross-sectional study included 456 children, ages 19-83 months. Children were either neurotypical (n = 134) or had a diagnosis of ASD (n = 238), or non-ASD developmental delay (n = 84). Comprehensive human and microbial RNA abundance was measured in the saliva of all participants using unbiased next generation sequencing. Prior to analysis, the sample was randomly divided into a training set (82% of subjects) and an independent validation test set (18% of subjects). The training set was used to develop an RNA-based algorithm that distinguished ASD and non-ASD children. The validation set was not used in model development (feature selection or training) but served only to validate empirical accuracy. Results: In the training set (n = 372; mean age 51 months; 75% male; 51% ASD), a set of 32 RNA features (controlled for demographic and medical characteristics), identified ASD status with a cross-validated area under the curve (AUC) of 0.87 (95% CI: 0.86-0.88). In the completely separate validation test set (n = 84; mean age 50 months; 85% male; 60% ASD), the algorithm maintained an AUC of 0.88 (82% sensitivity and 88% specificity). Notably, the RNA features were implicated in physiologic processes related to ASD (axon guidance, neurotrophic signaling). Conclusion: Salivary poly-omic RNA measurement represents a novel, non-invasive approach that can accurately identify children with ASD. This technology could improve the specificity of referrals for ASD evaluation or provide objective support for ASD diagnoses.

3.
J Neural Eng ; 12(6): 066018, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26479701

RESUMO

OBJECTIVE: One approach to conveying sensory feedback in neuroprostheses is to electrically stimulate sensory neurons in the cortex. For this approach to be viable, it is critical that intracortical microstimulation (ICMS) causes minimal damage to the brain. Here, we investigate the effects of chronic ICMS on the neuronal tissue across a variety of stimulation regimes in non-human primates. We also examine each animal's ability to use their hand--the cortical representation of which is targeted by the ICMS--as a further assay of possible neuronal damage. APPROACH: We implanted electrode arrays in the primary somatosensory cortex of three Rhesus macaques and delivered ICMS four hours per day, five days per week, for six months. Multiple regimes of ICMS were delivered to investigate the effects of stimulation parameters on the tissue and behavior. Parameters included current amplitude (10-100 µA), pulse train duration (1, 5 s), and duty cycle (1/1, 1/3). We then performed a range of histopathological assays on tissue near the tips of both stimulated and unstimulated electrodes to assess the effects of chronic ICMS on the tissue and their dependence on stimulation parameters. MAIN RESULTS: While the implantation and residence of the arrays in the cortical tissue did cause significant damage, chronic ICMS had no detectable additional effect; furthermore, the animals exhibited no impairments in fine motor control. SIGNIFICANCE: Chronic ICMS may be a viable means to convey sensory feedback in neuroprostheses as it does not cause significant damage to the stimulated tissue.


Assuntos
Eletrodos Implantados , Destreza Motora/fisiologia , Células Receptoras Sensoriais/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Estimulação Elétrica/métodos , Feminino , Força da Mão/fisiologia , Macaca mulatta , Masculino , Microeletrodos
4.
Cereb Cortex ; 19(9): 2038-64, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19221145

RESUMO

We examined the organization and cortical projections of the somatosensory thalamus using multiunit microelectrode recording techniques in anesthetized monkeys combined with neuroanatomical tracings techniques and architectonic analysis. Different portions of the hand representation in area 3b were injected with different anatomical tracers in the same animal, or matched body part representations in parietal areas 3a, 3b, 1, 2, and areas 2 and 5 were injected with different anatomical tracers in the same animal to directly compare their thalamocortical connections. We found that the somatosensory thalamus is composed of several representations of cutaneous and deep receptors of the contralateral body. These nuclei include the ventral posterior nucleus, the ventral posterior superior nucleus, the ventral posterior inferior nucleus, and the ventral lateral nucleus. Each nucleus projects to several different cortical fields, and each cortical field receives projections from multiple thalamic nuclei. In contrast to other sensory systems, each of these somatosensory cortical fields is uniquely innervated by multiple thalamic nuclei. These data indicate that multiple inputs are processed simultaneously within and across several, "hierarchically connected" cortical fields.


Assuntos
Vias Aferentes/citologia , Modelos Anatômicos , Modelos Neurológicos , Lobo Parietal/citologia , Córtex Somatossensorial/citologia , Animais , Macaca fascicularis , Macaca mulatta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...