Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37502932

RESUMO

Calcium (Ca2+) uptake by mitochondria is essential in regulating bioenergetics, cell death, and cytosolic Ca2+ transients. Mitochondrial Calcium Uniporter (MCU) mediates the mitochondrial Ca2+ uptake. MCU is a heterooligomeric complex with a pore-forming component and accessory proteins required for channel activity. Though MCU regulation by MICUs is unequivocally established, there needs to be more knowledge of whether divalent cations regulate MCU. Here we set out to understand the mitochondrial matrix Mg2+-dependent regulation of MCU activity. We showed Mrs2 as the authentic mammalian mitochondrial Mg2+ channel using the planar lipid bilayer recordings. Using a liver-specific Mrs2 KO mouse model, we showed that decreased matrix [Mg2+] is associated with increased MCU activity and matrix Ca2+ overload. The disruption of Mg2+dependent MCU regulation significantly prompted mitochondrial permeability transition pore opening-mediated cell death during tissue IR injury. Our findings support a critical role for mMg2+ in regulating MCU activity and attenuating mCa2+ overload.

2.
Life Sci ; 309: 121003, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36181865

RESUMO

AIMS: Macrophages are crucial for the initiation and resolution of an inflammatory response. Non-coding circular RNAs are ubiquitously expressed in mammalian tissue, highly conserved among species, and recently implicated in the regulation of macrophage activation. We sought to determine whether circRNAs modulate monocyte/macrophage biology and function. MATERIALS AND METHODS: We performed circRNA microarray analyses to assess transcriptome changes using RNA isolated from bone marrow derived macrophages polarized to a pro-inflammatory phenotype (INFγ + TNFα) or an anti-inflammatory phenotype (IL-10, IL-4, and TGF-ß). Among differentially expressed circRNAs, circ-Cdr1as was chosen for further investigation. Additionally, we performed loss or gain of function studies to investigate if circ-Cdr1as is involved in phenotypic switching. For gain of function, we overexpressed circ-Cdr1as using pc3.1 plasmid with laccase2 flanking regions to promote circularization. For loss of function, we used a lentiviral short hairpin RNA targeting the circ-Cdr1as splicing junction. KEY FINDINGS: Among circRNAs that are highly conserved and differentially expressed in pro- and anti-inflammatory lineages, circ-Cdr1as was one of the most downregulated in pro-inflammatory macrophages and significantly upregulated in anti-inflammatory macrophages in vitro. Overexpression of circ-Cdr1as increased transcription of anti-inflammatory markers and percentage of CD206+ cells in naïve and pro-inflammatory macrophages in vitro. Meanwhile, knockdown decreased transcription of anti-inflammatory markers and increased the percentage of CD86+ cells in naïve and anti-inflammatory macrophages in vitro. SIGNIFICANCE: This study suggests that circ-Cdr1as plays a key role in regulating anti-inflammatory phenotype of macrophages and may potentially be developed as an anti-inflammatory regulator in tissue inflammation.


Assuntos
MicroRNAs , RNA Circular , Animais , RNA Circular/genética , Fator de Necrose Tumoral alfa/genética , Interleucina-10/genética , RNA Interferente Pequeno , Interleucina-4/genética , MicroRNAs/genética , RNA/genética , Macrófagos , Fenótipo , Fator de Crescimento Transformador beta/genética , Mamíferos/genética
3.
Cardiovasc Res ; 118(5): 1276-1288, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33892492

RESUMO

AIMS: Epidermal growth factor receptor (EGFR) is essential to the development of multiple tissues and organs and is a target of cancer therapeutics. Due to the embryonic lethality of global EGFR deletion and conflicting reports of cardiac-overexpressed EGFR mutants, its specific impact on the adult heart, normally or in response to chronic stress, has not been established. Using complimentary genetic strategies to modulate cardiomyocyte-specific EGFR expression, we aim to define its role in the regulation of cardiac function and remodelling. METHODS AND RESULTS: A floxed EGFR mouse model with α-myosin heavy chain-Cre-mediated cardiomyocyte-specific EGFR downregulation (CM-EGFR-KD mice) developed contractile dysfunction by 9 weeks of age, marked by impaired diastolic relaxation, as monitored via echocardiographic, haemodynamic, and isolated cardiomyocyte contractility analyses. This contractile defect was maintained over time without overt cardiac remodelling until 10 months of age, after which the mice ultimately developed severe heart failure and reduced lifespan. Acute downregulation of EGFR in adult floxed EGFR mice with adeno-associated virus 9 (AAV9)-encoded Cre with a cardiac troponin T promoter (AAV9-cTnT-Cre) recapitulated the CM-EGFR-KD phenotype, while AAV9-cTnT-EGFR treatment of adult CM-EGFR-KD mice rescued the phenotype. Notably, chronic administration of the ß-adrenergic receptor agonist isoproterenol effectively and reversibly compensated for the contractile dysfunction in the absence of cardiomyocyte hypertrophy in CM-EGFR-KD mice. Mechanistically, EGFR downregulation reduced the expression of protein phosphatase 2A regulatory subunit Ppp2r3a/PR72, which was associated with decreased phosphorylation of phospholamban and Ca2+ clearance, and whose re-expression via AAV9-cTnT-PR72 rescued the CM-EGFR-KD phenotype. CONCLUSIONS: Altogether, our study highlights a previously unrecognized role for EGFR in maintaining contractile homeostasis under physiologic conditions in the adult heart via regulation of PR72 expression.


Assuntos
Receptores ErbB , Contração Miocárdica , Miócitos Cardíacos , Animais , Dependovirus , Receptores ErbB/genética , Receptores ErbB/metabolismo , Isoproterenol/farmacologia , Camundongos , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Troponina T/genética
4.
Circulation ; 143(11): 1139-1156, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33430631

RESUMO

BACKGROUND: We previously showed that cardiomyocyte Krϋppel-like factor (KLF) 5 regulates cardiac fatty acid oxidation. As heart failure has been associated with altered fatty acid oxidation, we investigated the role of cardiomyocyte KLF5 in lipid metabolism and pathophysiology of ischemic heart failure. METHODS: Using real-time polymerase chain reaction and Western blot, we investigated the KLF5 expression changes in a myocardial infarction (MI) mouse model and heart tissue from patients with ischemic heart failure. Using 2D echocardiography, we evaluated the effect of KLF5 inhibition after MI using pharmacological KLF5 inhibitor ML264 and mice with cardiomyocyte-specific KLF5 deletion (αMHC [α-myosin heavy chain]-KLF5-/-). We identified the involvement of KLF5 in regulating lipid metabolism and ceramide accumulation after MI using liquid chromatography-tandem mass spectrometry, and Western blot and real-time polymerase chain reaction analysis of ceramide metabolism-related genes. We lastly evaluated the effect of cardiomyocyte-specific KLF5 overexpression (αMHC-rtTA [reverse tetracycline-controlled transactivator]-KLF5) on cardiac function and ceramide metabolism, and rescued the phenotype using myriocin to inhibit ceramide biosynthesis. RESULTS: KLF5 mRNA and protein levels were higher in human ischemic heart failure samples and in rodent models at 24 hours, 2 weeks, and 4 weeks post-permanent left coronary artery ligation. αMHC-KLF5-/- mice and mice treated with ML264 had higher ejection fraction and lower ventricular volume and heart weight after MI. Lipidomic analysis showed that αMHC-KLF5-/- mice with MI had lower myocardial ceramide levels compared with littermate control mice with MI, although basal ceramide content of αMHC-KLF5-/- mice was not different in control mice. KLF5 ablation suppressed the expression of SPTLC1 and SPTLC2 (serine palmitoyltransferase [SPT] long-chain base subunit ()1 2, respectively), which regulate de novo ceramide biosynthesis. We confirmed our previous findings that myocardial SPTLC1 and SPTLC2 levels are increased in heart failure patients. Consistently, αMHC-rtTA-KLF5 mice showed increased SPTLC1 and SPTLC2 expression, higher myocardial ceramide levels, and systolic dysfunction beginning 2 weeks after KLF5 induction. Treatment of αMHC-rtTA-KLF5 mice with myriocin that inhibits SPT, suppressed myocardial ceramide levels and alleviated systolic dysfunction. CONCLUSIONS: KLF5 is induced during the development of ischemic heart failure in humans and mice and stimulates ceramide biosynthesis. Genetic or pharmacological inhibition of KLF5 in mice with MI prevents ceramide accumulation, alleviates eccentric remodeling, and increases ejection fraction. Thus, KLF5 emerges as a novel therapeutic target for the treatment of ischemic heart failure.


Assuntos
Cardiomiopatias/fisiopatologia , Ceramidas/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Miócitos Cardíacos/metabolismo , Remodelação Ventricular/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos
5.
J Control Release ; 328: 834-845, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33157191

RESUMO

Adeno-associated virus (AAV) is a promising vector for gene therapy, but its broad tropism can be detrimental if the transgene being delivered is harmful when expressed ubiquitously in the body, i.e. in non-target tissues. Delivering the transgene of interest to target cells at levels high enough to be therapeutically effective while maintaining safety by minimizing delivery to off-target cells is a prevalent challenge in the field of gene therapy. We have developed a protease activatable vector (provector) platform based on AAV9 that can be injected systemically to deliver therapeutic transgenes site-specifically to diseased cells by responding to extracellular proteases present at the disease site. The provector platform consists of a peptide insertion into the virus capsid which disrupts the virus' ability to bind to cell surface receptors. This peptide contains a blocking motif (aspartic acid residues) flanked on either side by cleavage sequences that are recognized by certain proteases. Exposure to proteases cleaves the peptides off the capsid, activating or "switching ON" the provector. In response to the activation, the provectors regain their ability to bind and transduce cells. Here, we have designed a provector that is activated by cysteine aspartic proteases (caspases), which have roles in inflammation and apoptosis and thus are elevated at sites of diseases such as heart failure, neurodegenerative diseases, and ischemic stroke. This provector demonstrates a 200-fold reduction in transduction ability in the OFF state compared to AAV9, reducing the virus' ability to transduce off-target healthy tissue. Following exposure to and proteolysis by caspase-3, the provector shows a 95-fold increase in transduction compared to the OFF state. The switchable transduction behavior was found to be a direct result of the peptide insertion ablating the ability of the virus to bind to cells. In vivo studies were conducted to characterize the biodistribution, blood circulation time, neutralizing antibody formation, and targeted delivery ability of the caspase-activatable provector in a model of heart failure.


Assuntos
Dependovirus , Vetores Genéticos , Caspases , Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética , Distribuição Tecidual , Transdução Genética , Transgenes
7.
Nat Commun ; 10(1): 4317, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541092

RESUMO

Circular RNAs are generated from many protein-coding genes, but their role in cardiovascular health and disease states remains unknown. Here we report identification of circRNA transcripts that are differentially expressed in post myocardial infarction (MI) mouse hearts including circFndc3b which is significantly down-regulated in the post-MI hearts. Notably, the human circFndc3b ortholog is also significantly down-regulated in cardiac tissues of ischemic cardiomyopathy patients. Overexpression of circFndc3b in cardiac endothelial cells increases vascular endothelial growth factor-A expression and enhances their angiogenic activity and reduces cardiomyocytes and endothelial cell apoptosis. Adeno-associated virus 9 -mediated cardiac overexpression of circFndc3b in post-MI hearts reduces cardiomyocyte apoptosis, enhances neovascularization and improves left ventricular functions. Mechanistically, circFndc3b interacts with the RNA binding protein Fused in Sarcoma to regulate VEGF expression and signaling. These findings highlight a physiological role for circRNAs in cardiac repair and indicate that modulation of circFndc3b expression may represent a potential strategy to promote cardiac function and remodeling after MI.


Assuntos
Fibronectinas/genética , Infarto do Miocárdio/metabolismo , Isquemia Miocárdica/metabolismo , RNA Circular/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Apoptose/fisiologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , RNA Circular/biossíntese , RNA Circular/genética , Proteína FUS de Ligação a RNA/genética
8.
Cell Rep ; 26(13): 3709-3725.e7, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917323

RESUMO

Mitochondrial Ca2+ uniporter (MCU)-mediated Ca2+ uptake promotes the buildup of reducing equivalents that fuel oxidative phosphorylation for cellular metabolism. Although MCU modulates mitochondrial bioenergetics, its function in energy homeostasis in vivo remains elusive. Here we demonstrate that deletion of the Mcu gene in mouse liver (MCUΔhep) and in Danio rerio by CRISPR/Cas9 inhibits mitochondrial Ca2+ (mCa2+) uptake, delays cytosolic Ca2+ (cCa2+) clearance, reduces oxidative phosphorylation, and leads to increased lipid accumulation. Elevated hepatic lipids in MCUΔhep were a direct result of extramitochondrial Ca2+-dependent protein phosphatase-4 (PP4) activity, which dephosphorylates AMPK. Loss of AMPK recapitulates hepatic lipid accumulation without changes in MCU-mediated Ca2+ uptake. Furthermore, reconstitution of active AMPK, or PP4 knockdown, enhances lipid clearance in MCUΔhep hepatocytes. Conversely, gain-of-function MCU promotes rapid mCa2+ uptake, decreases PP4 levels, and reduces hepatic lipid accumulation. Thus, our work uncovers an MCU/PP4/AMPK molecular cascade that links Ca2+ dynamics to hepatic lipid metabolism.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Proteínas Mitocondriais/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Canais de Cálcio/genética , Células Cultivadas , Feminino , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas Quinases/metabolismo , Peixe-Zebra
9.
J Cell Physiol ; 234(4): 4432-4444, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30256393

RESUMO

The pathophysiology of human immunodeficiency virus (HIV)-associated cardiomyopathy remains uncertain. We used HIV-1 transgenic (Tg26) mice to explore mechanisms by which HIV-related proteins impacted on myocyte function. Compared to adult ventricular myocytes isolated from nontransgenic (wild type [WT]) littermates, Tg26 myocytes had similar mitochondrial membrane potential (ΔΨ m ) under normoxic conditions but lower Δ Ψ m after hypoxia/reoxygenation (H/R). In addition, Δ Ψ m in Tg26 myocytes failed to recover after Ca 2+ challenge. Functionally, mitochondrial Ca 2+ uptake was severely impaired in Tg26 myocytes. Basal and maximal oxygen consumption rates (OCR) were lower in normoxic Tg26 myocytes, and further reduced after H/R. Complex I subunit and ATP levels were lower in Tg26 hearts. Post-H/R, mitochondrial superoxide (O 2•- ) levels were higher in Tg26 compared to WT myocytes. Overexpression of B-cell lymphoma 2-associated athanogene 3 (BAG3) reduced O 2•- levels in hypoxic WT and Tg26 myocytes back to normal. Under normoxic conditions, single myocyte contraction dynamics were similar between WT and Tg26 myocytes. Post-H/R and in the presence of isoproterenol, myocyte contraction amplitudes were lower in Tg26 myocytes. BAG3 overexpression restored Tg26 myocyte contraction amplitudes to those measured in WT myocytes post-H/R. Coimmunoprecipitation experiments demonstrated physical association of BAG3 and the HIV protein Tat. We conclude: (a) Under basal conditions, mitochondrial Ca 2+ uptake, OCR, and ATP levels were lower in Tg26 myocytes; (b) post-H/R, Δ Ψ m was lower, mitochondrial O 2•- levels were higher, and contraction amplitudes were reduced in Tg26 myocytes; and (c) BAG3 overexpression decreased O 2•- levels and restored contraction amplitudes to normal in Tg26 myocytes post-H/R in the presence of isoproterenol.


Assuntos
Cardiomiopatias/metabolismo , Metabolismo Energético , Infecções por HIV/complicações , HIV-1/genética , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Cardiomiopatias/virologia , Hipóxia Celular , Células Cultivadas , Modelos Animais de Doenças , Infecções por HIV/virologia , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Cardíacas/virologia , Contração Miocárdica , Miócitos Cardíacos/virologia , Oxirredução , Estresse Oxidativo , Consumo de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Função Ventricular Esquerda
10.
J Biol Chem ; 294(8): 2913-2923, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30567734

RESUMO

Phosphorylation of cardiac sarcomeric proteins plays a major role in the regulation of the physiological performance of the heart. Phosphorylation of thin filament proteins, such as troponin I and T, dramatically affects calcium sensitivity of the myofiber and systolic and diastolic functions. Phosphorylation of the regulatory protein tropomyosin (Tpm) results in altered biochemical properties of contraction; however, little is known about the physiological effect of Tpm phosphorylation on cardiac function. To address the in vivo significance of Tpm phosphorylation, here we generated transgenic mouse lines having a phosphomimetic substitution in the phosphorylation site of α-Tpm (S283D). High expression of Tpm S283D variant in one transgenic mouse line resulted in an increased heart:body weight ratio, coupled with a severe dilated cardiomyopathic phenotype resulting in death within 1 month of birth. Moderate Tpm S283D mice expression in other lines caused mild myocyte hypertrophy and fibrosis, did not affect lifespan, and was coupled with decreased expression of extracellular signal-regulated kinase 1/2 kinase signaling. Physiological analysis revealed that the transgenic mice exhibit impaired diastolic function, without changes in systolic performance. Surprisingly, we observed no alterations in calcium sensitivity of the myofibers, cooperativity, or calcium-ATPase activity in the myofibers. Our experiments also disclosed that casein kinase 2 plays an integral role in Tpm phosphorylation. In summary, increased expression of pseudo-phosphorylated Tpm impairs diastolic function in the intact heart, without altering calcium sensitivity or cooperativity of myofibers. Our findings provide the first extensive in vivo assessment of Tpm phosphorylation in the heart and its functional role in cardiac performance.


Assuntos
Citoesqueleto de Actina/metabolismo , Cálcio/metabolismo , Cardiomiopatia Dilatada/patologia , Tropomiosina/fisiologia , Animais , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/metabolismo , Células Cultivadas , Camundongos , Camundongos Transgênicos , Mutação , Miofibrilas/metabolismo , Miofibrilas/patologia , Fosforilação
11.
Nat Commun ; 9(1): 3449, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158529

RESUMO

Although many factors contribute to cellular differentiation, the role of mitochondria Ca2+ dynamics during development remains unexplored. Because mammalian embryonic epiblasts reside in a hypoxic environment, we intended to understand whether mCa2+ and its transport machineries are regulated during hypoxia. Tissues from multiple organs of developing mouse embryo evidenced a suppression of MICU1 expression with nominal changes on other MCU complex components. As surrogate models, we here utilized human embryonic stem cells (hESCs)/induced pluripotent stem cells (hiPSCs) and primary neonatal myocytes to delineate the mechanisms that control mCa2+ and bioenergetics during development. Analysis of MICU1 expression in hESCs/hiPSCs showed low abundance of MICU1 due to its direct repression by Foxd1. Experimentally, restoration of MICU1 established the periodic cCa2+ oscillations and promoted cellular differentiation and maturation. These findings establish a role of mCa2+ dynamics in regulation of cellular differentiation and reveal a molecular mechanism underlying this contribution through differential regulation of MICU1.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Animais , Western Blotting , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte de Cátions/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fatores de Transcrição Forkhead/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Interferência de RNA
12.
J Physiol ; 596(18): 4413-4426, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30099751

RESUMO

KEY POINTS: Referring to the muscle memory theory, previously trained muscles acquire strength and volume much faster than naive muscles. Using extreme experimental models such as synergist ablation or steroid administration, previous studies have demonstrated that the number of nuclei increases when a muscle becomes enlarged, which serves as a cellular muscle memory mechanism for the muscle. In the present study, we found that, when rats were subjected to physiologically relevant resistance training, the number of myonuclei increased and was retained during a long-term detraining period. The acquired myonuclei were related to a greater degree of muscle hypertrophic and mitochondrial biogenesis processes following subsequent hypertrophic conditions. Our data suggest a cellular mechanism supporting the notion that exposing young muscles to resistance training would help to restore age-related muscle loss coupled with mitochondrial dysfunction in later life. ABSTRACT: Muscle hypertrophy induced by resistance training is accompanied by an increase in the number of myonuclei. The acquired myonuclei are viewed as a cellular component of muscle memory by which muscle enlargement is promoted during a re-training period. In the present study, we investigated the effect of exercise preconditioning on mitochondrial remodelling induced by resistance training. Sprague-Dawley rats were divided into four groups: untrained control, training, pre-training or re-training. The training groups were subjected to weight loaded-ladder climbing exercise training. Myonuclear numbers were significantly greater (up to 20%) in all trained muscles compared to untrained controls. Muscle mass was significantly higher in the re-training group compared to the training group (∼2-fold increase). Mitochondrial content, mitochondrial biogenesis gene expression levels and mitochondrial DNA copy numbers were significantly higher in re-trained muscles compared to the others. Oxidative myofibres (type I) were significantly increased only in the re-trained muscles. Furthermore, in vitro studies using insulin-like growth factor-1-treated L6 rat myotubes demonstrated that myotubes with a higher myonuclear number confer greater expression levels of both mitochondrial and nuclear genes encoding for constitutive and regulatory mitochondrial proteins, which also showed a greater mitochondrial respiratory function. These data suggest that myonuclei acquired from previous training facilitate mitochondrial biogenesis in response to subsequent retraining by (at least in part) enhancing cross-talk between mitochondria and myonuclei in the pre-conditioned myofibres.


Assuntos
Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Biogênese de Organelas , Condicionamento Físico Animal , Animais , Núcleo Celular/metabolismo , DNA Mitocondrial/genética , Feminino , Fibras Musculares Esqueléticas/metabolismo , Força Muscular , Ratos , Ratos Sprague-Dawley
13.
Cell Rep ; 23(4): 1005-1019, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29694881

RESUMO

Mitochondria shape cytosolic calcium ([Ca2+]c) transients and utilize the mitochondrial Ca2+ ([Ca2+]m) in exchange for bioenergetics output. Conversely, dysregulated [Ca2+]c causes [Ca2+]m overload and induces permeability transition pore and cell death. Ablation of MCU-mediated Ca2+ uptake exhibited elevated [Ca2+]c and failed to prevent stress-induced cell death. The mechanisms for these effects remain elusive. Here, we report that mitochondria undergo a cytosolic Ca2+-induced shape change that is distinct from mitochondrial fission and swelling. [Ca2+]c elevation, but not MCU-mediated Ca2+ uptake, appears to be essential for the process we term mitochondrial shape transition (MiST). MiST is mediated by the mitochondrial protein Miro1 through its EF-hand domain 1 in multiple cell types. Moreover, Ca2+-dependent disruption of Miro1/KIF5B/tubulin complex is determined by Miro1 EF1 domain. Functionally, Miro1-dependent MiST is essential for autophagy/mitophagy that is attenuated in Miro1 EF1 mutants. Thus, Miro1 is a cytosolic Ca2+ sensor that decodes metazoan Ca2+ signals as MiST.


Assuntos
Cálcio/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Receptores Acoplados a Proteínas G/metabolismo , Estresse Fisiológico , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Células HeLa , Humanos , Camundongos , Camundongos Mutantes , Mitocôndrias/genética , Receptores Acoplados a Proteínas G/genética , Proteínas rho de Ligação ao GTP/genética
14.
Circ Heart Fail ; 11(1): e004486, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29317401

RESUMO

BACKGROUND: FSTL1 (follistatin-like protein 1) is an emerging cardiokine/myokine that is upregulated in heart failure (HF) and is found to be cardioprotective in animal models of cardiac injury. We tested the hypothesis that circulating FSTL1 can affect cardiac function and metabolism under baseline physiological conditions and in HF. METHODS AND RESULTS: FSTL1 was acutely (10 minutes) or chronically (2 weeks) infused to attain clinically relevant blood levels in conscious dogs with cardiac tachypacing-induced HF. Dogs with no cardiac pacing and FSTL1 infusion served as control. 3H-oleate and 14C-glucose were infused to track the metabolic fate of free fatty acids and glucose. Cardiac uptake of lactate and ketone bodies and systemic respiratory quotient were also measured. HF caused a shift from prevalent cardiac and systemic fat to carbohydrate oxidation. Although acute FSTL1 administration caused minimal hemodynamic changes at baseline, in HF dogs it enhanced cardiac oxygen consumption and transiently reversed the changes in free fatty acid and glucose oxidation and systemic respiratory quotient. In HF, chronic FSTL1 infusion stably normalized cardiac free fatty acid, glucose, ketone body consumption, and systemic respiratory quotient, while moderately improving diastolic and contractile function. Consistently, FSTL1 prevented the downregulation of medium-chain acyl-CoA dehydrogenase-a representative enzyme of the free fatty acid oxidation pathway. Complementary in vitro experiments in primary cardiac and skeletal muscle myocytes showed that FSTL1 stimulated oxygen consumption through AMPK (AMP-activated kinase) activation. CONCLUSIONS: These findings support a novel function for FSTL1 and provide the first direct evidence that a circulating cardiokine/myokine can alter myocardial and systemic energy substrate metabolism, in vivo.


Assuntos
Proteínas Relacionadas à Folistatina/sangue , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Animais , Pressão Sanguínea , Estimulação Cardíaca Artificial , Modelos Animais de Doenças , Cães , Esquema de Medicação , Ácidos Graxos não Esterificados/metabolismo , Proteínas Relacionadas à Folistatina/administração & dosagem , Glucose/metabolismo , Insuficiência Cardíaca/etiologia , Corpos Cetônicos/metabolismo , Masculino , Consumo de Oxigênio , Resistência Vascular
15.
Blood ; 130(5): 567-580, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28500171

RESUMO

Platelet-derived microparticles (PMPs) are associated with enhancement of metastasis and poor cancer outcomes. Circulating PMPs transfer platelet microRNAs (miRNAs) to vascular cells. Solid tumor vasculature is highly permeable, allowing the possibility of PMP-tumor cell interaction. Here, we show that PMPs infiltrate solid tumors in humans and mice and transfer platelet-derived RNA, including miRNAs, to tumor cells in vivo and in vitro, resulting in tumor cell apoptosis. MiR-24 was a major species in this transfer. PMP transfusion inhibited growth of both lung and colon carcinoma ectopic tumors, whereas blockade of miR-24 in tumor cells accelerated tumor growth in vivo, and prevented tumor growth inhibition by PMPs. Conversely, Par4-deleted mice, which had reduced circulating microparticles (MPs), supported accelerated tumor growth which was halted by PMP transfusion. PMP targeting was associated with tumor cell apoptosis in vivo. We identified direct RNA targets of platelet-derived miR-24 in tumor cells, which included mitochondrial mt-Nd2, and Snora75, a noncoding small nucleolar RNA. These RNAs were suppressed in PMP-treated tumor cells, resulting in mitochondrial dysfunction and growth inhibition, in an miR-24-dependent manner. Thus, platelet-derived miRNAs transfer in vivo to tumor cells in solid tumors via infiltrating MPs, regulate tumor cell gene expression, and modulate tumor progression. These findings provide novel insight into mechanisms of horizontal RNA transfer and add multiple layers to the regulatory roles of miRNAs and PMPs in tumor progression. Plasma MP-mediated transfer of regulatory RNAs and modulation of gene expression may be a common feature with important outcomes in contexts of enhanced vascular permeability.


Assuntos
Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Animais , Micropartículas Derivadas de Células/transplante , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/terapia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Camundongos , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Receptores Ativados por Proteinase
16.
Mol Cell ; 65(6): 1014-1028.e7, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28262504

RESUMO

Ca2+ dynamics and oxidative signaling are fundamental mechanisms for mitochondrial bioenergetics and cell function. The MCU complex is the major pathway by which these signals are integrated in mitochondria. Whether and how these coactive elements interact with MCU have not been established. As an approach toward understanding the regulation of MCU channel by oxidative milieu, we adapted inflammatory and hypoxia models. We identified the conserved cysteine 97 (Cys-97) to be the only reactive thiol in human MCU that undergoes S-glutathionylation. Furthermore, biochemical, structural, and superresolution imaging analysis revealed that MCU oxidation promotes MCU higher order oligomer formation. Both oxidation and mutation of MCU Cys-97 exhibited persistent MCU channel activity with higher [Ca2+]m uptake rate, elevated mROS, and enhanced [Ca2+]m overload-induced cell death. In contrast, these effects were largely independent of MCU interaction with its regulators. These findings reveal a distinct functional role for Cys-97 in ROS sensing and regulation of MCU activity.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Células Endoteliais/metabolismo , Ativação do Canal Iônico , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Células COS , Canais de Cálcio/química , Canais de Cálcio/genética , Sinalização do Cálcio/efeitos dos fármacos , Morte Celular , Hipóxia Celular , Chlorocebus aethiops , Cisteína , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Metabolismo Energético , Glutationa/metabolismo , Células HEK293 , Células HeLa , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/patologia , Mutação , Oxirredução , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade , Trombina/farmacologia , Fatores de Tempo , Transfecção
17.
Cell Chem Biol ; 23(9): 1157-1169, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27569754

RESUMO

Calcium (Ca(2+)) flux into the matrix is tightly controlled by the mitochondrial Ca(2+) uniporter (MCU) due to vital roles in cell death and bioenergetics. However, the precise atomic mechanisms of MCU regulation remain unclear. Here, we solved the crystal structure of the N-terminal matrix domain of human MCU, revealing a ß-grasp-like fold with a cluster of negatively charged residues that interacts with divalent cations. Binding of Ca(2+) or Mg(2+) destabilizes and shifts the self-association equilibrium of the domain toward monomer. Mutational disruption of the acidic face weakens oligomerization of the isolated matrix domain and full-length human protein similar to cation binding and markedly decreases MCU activity. Moreover, mitochondrial Mg(2+) loading or blockade of mitochondrial Ca(2+) extrusion suppresses MCU Ca(2+)-uptake rates. Collectively, our data reveal that the ß-grasp-like matrix region harbors an MCU-regulating acidic patch that inhibits human MCU activity in response to Mg(2+) and Ca(2+) binding.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Cálcio/farmacologia , Magnésio/metabolismo , Magnésio/farmacologia , Cálcio/química , Canais de Cálcio/química , Cátions Bivalentes/química , Cátions Bivalentes/metabolismo , Cátions Bivalentes/farmacologia , Humanos , Magnésio/química , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos
18.
Cell Rep ; 15(8): 1673-85, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27184846

RESUMO

Mitochondrial Ca(2+) Uniporter (MCU)-dependent mitochondrial Ca(2+) uptake is the primary mechanism for increasing matrix Ca(2+) in most cell types. However, a limited understanding of the MCU complex assembly impedes the comprehension of the precise mechanisms underlying MCU activity. Here, we report that mouse cardiomyocytes and endothelial cells lacking MCU regulator 1 (MCUR1) have severely impaired [Ca(2+)]m uptake and IMCU current. MCUR1 binds to MCU and EMRE and function as a scaffold factor. Our protein binding analyses identified the minimal, highly conserved regions of coiled-coil domain of both MCU and MCUR1 that are necessary for heterooligomeric complex formation. Loss of MCUR1 perturbed MCU heterooligomeric complex and functions as a scaffold factor for the assembly of MCU complex. Vascular endothelial deletion of MCU and MCUR1 impaired mitochondrial bioenergetics, cell proliferation, and migration but elicited autophagy. These studies establish the existence of a MCU complex that assembles at the mitochondrial integral membrane and regulates Ca(2+)-dependent mitochondrial metabolism.


Assuntos
Canais de Cálcio/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Autofagia , Cálcio/metabolismo , Canais de Cálcio/química , Movimento Celular , Células Endoteliais/metabolismo , Deleção de Genes , Células HEK293 , Células HeLa , Coração/fisiologia , Humanos , Camundongos Knockout , Proteínas Mitocondriais/química , Neovascularização Fisiológica , Ligação Proteica , Domínios Proteicos
19.
Circ Res ; 118(8): 1208-22, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26976650

RESUMO

RATIONALE: Cardiac myocyte-specific deletion of either glycogen synthase kinase (GSK)-3α and GSK-3ß leads to cardiac protection after myocardial infarction, suggesting that deletion of both isoforms may provide synergistic protection. This is an important consideration because of the fact that all GSK-3-targeted drugs, including the drugs already in clinical trial target both isoforms of GSK-3, and none are isoform specific. OBJECTIVE: To identify the consequences of combined deletion of cardiac myocyte GSK-3α and GSK-3ß in heart function. METHODS AND RESULTS: We generated tamoxifen-inducible cardiac myocyte-specific mice lacking both GSK-3 isoforms (double knockout). We unexpectedly found that cardiac myocyte GSK-3 is essential for cardiac homeostasis and overall survival. Serial echocardiographic analysis reveals that within 2 weeks of tamoxifen treatment, double-knockout hearts leads to excessive dilatative remodeling and ventricular dysfunction. Further experimentation with isolated adult cardiac myocytes and fibroblasts from double-knockout implicated cardiac myocytes intrinsic factors responsible for observed phenotype. Mechanistically, loss of GSK-3 in adult cardiac myocytes resulted in induction of mitotic catastrophe, a previously unreported event in cardiac myocytes. Double-knockout cardiac myocytes showed cell cycle progression resulting in increased DNA content and multinucleation. However, increased cell cycle activity was rivaled by marked activation of DNA damage, cell cycle checkpoint activation, and mitotic catastrophe-induced apoptotic cell death. Importantly, mitotic catastrophe was also confirmed in isolated adult cardiac myocytes. CONCLUSIONS: Together, our findings suggest that cardiac myocyte GSK-3 is required to maintain normal cardiac homeostasis, and its loss is incompatible with life because of cell cycle dysregulation that ultimately results in a severe fatal dilated cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/mortalidade , Quinase 3 da Glicogênio Sintase/deficiência , Mitose/fisiologia , Miócitos Cardíacos/metabolismo , Animais , Cardiomiopatia Dilatada/patologia , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia
20.
Mol Cell ; 60(1): 47-62, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26387735

RESUMO

Mitochondrial permeability transition is a phenomenon in which the mitochondrial permeability transition pore (PTP) abruptly opens, resulting in mitochondrial membrane potential (ΔΨm) dissipation, loss of ATP production, and cell death. Several genetic candidates have been proposed to form the PTP complex, however, the core component is unknown. We identified a necessary and conserved role for spastic paraplegia 7 (SPG7) in Ca(2+)- and ROS-induced PTP opening using RNAi-based screening. Loss of SPG7 resulted in higher mitochondrial Ca(2+) retention, similar to cyclophilin D (CypD, PPIF) knockdown with sustained ΔΨm during both Ca(2+) and ROS stress. Biochemical analyses revealed that the PTP is a heterooligomeric complex composed of VDAC, SPG7, and CypD. Silencing or disruption of SPG7-CypD binding prevented Ca(2+)- and ROS-induced ΔΨm depolarization and cell death. This study identifies an ubiquitously expressed IMM integral protein, SPG7, as a core component of the PTP at the OMM and IMM contact site.


Assuntos
Ciclofilinas/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Mitocôndrias/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Sítios de Ligação , Cálcio/metabolismo , Morte Celular , Ciclofilinas/química , Células HEK293 , Células HeLa , Humanos , Potencial da Membrana Mitocondrial , Metaloendopeptidases/química , Membranas Mitocondriais/metabolismo , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...