Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fluids Barriers CNS ; 20(1): 94, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115038

RESUMO

BACKGROUND: Microdialysis is a technique that can be utilized to sample the interstitial fluid of the central nervous system (CNS), including in primary malignant brain tumors known as gliomas. Gliomas are mainly accessible at the time of surgery, but have rarely been analyzed via interstitial fluid collected via microdialysis. To that end, we obtained an investigational device exemption for high molecular weight catheters (HMW, 100 kDa) and a variable flow rate pump to perform microdialysis at flow rates amenable to an intra-operative setting. We herein report on the lessons and insights obtained during our intra-operative HMW microdialysis trial, both in regard to methodological and analytical considerations. METHODS: Intra-operative HMW microdialysis was performed during 15 clinically indicated glioma resections in fourteen patients, across three radiographically diverse regions in each patient. Microdialysates were analyzed via targeted and untargeted metabolomics via ultra-performance liquid chromatography tandem mass spectrometry. RESULTS: Use of albumin and lactate-containing perfusates impacted subsets of metabolites evaluated via global metabolomics. Additionally, focal delivery of lactate via a lactate-containing perfusate, induced local metabolic changes, suggesting the potential for intra-operative pharmacodynamic studies via reverse microdialysis of candidate drugs. Multiple peri-operatively administered drugs, including levetiracetam, cefazolin, caffeine, mannitol and acetaminophen, could be detected from one microdialysate aliquot representing 10 min worth of intra-operative sampling. Moreover, clinical, radiographic, and methodological considerations for performing intra-operative microdialysis are discussed. CONCLUSIONS: Intra-operative HMW microdialysis can feasibly be utilized to sample the live human CNS microenvironment, including both metabolites and drugs, within one surgery. Certain variables, such as perfusate type, must be considered during and after analysis. Trial registration NCT04047264.


Assuntos
Glioma , Humanos , Microdiálise , Glioma/cirurgia , Líquido Extracelular/metabolismo , Ácido Láctico/metabolismo , Catéteres , Microambiente Tumoral
2.
NPJ Precis Oncol ; 7(1): 126, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030881

RESUMO

High-grade gliomas are primary brain tumors that are incredibly refractory long-term to surgery and chemoradiation, with no proven durable salvage therapies for patients that have failed conventional treatments. Post-treatment, the latent glioma and its microenvironment are characterized by a senescent-like state of mitotic arrest and a senescence-associated secretory phenotype (SASP) induced by prior chemoradiation. Although senescence was once thought to be irreversible, recent evidence has demonstrated that cells may escape this state and re-enter the cell cycle, contributing to tumor recurrence. Moreover, senescent tumor cells could spur the growth of their non-senescent counterparts, thereby accelerating recurrence. In this review, we highlight emerging evidence supporting the use of senolytic agents to ablate latent, senescent-like cells that could contribute to tumor recurrence. We also discuss how senescent cell clearance can decrease the SASP within the tumor microenvironment thereby reducing tumor aggressiveness at recurrence. Finally, senolytics could improve the long-term sequelae of prior therapy on cognition and bone marrow function. We critically review the senolytic drugs currently under preclinical and clinical investigation and the potential challenges that may be associated with deploying senolytics against latent glioma. In conclusion, senescence in glioma and the microenvironment are critical and potential targets for delaying or preventing tumor recurrence and improving patient functional outcomes through senotherapeutics.

3.
Commun Biol ; 6(1): 653, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340056

RESUMO

The extracellular microenvironment modulates glioma behaviour. It remains unknown if blood-brain barrier disruption merely reflects or functionally supports glioma aggressiveness. We utilised intra-operative microdialysis to sample the extracellular metabolome of radiographically diverse regions of gliomas and evaluated the global extracellular metabolome via ultra-performance liquid chromatography tandem mass spectrometry. Among 162 named metabolites, guanidinoacetate (GAA) was 126.32x higher in enhancing tumour than in adjacent brain. 48 additional metabolites were 2.05-10.18x more abundant in enhancing tumour than brain. With exception of GAA, and 2-hydroxyglutarate in IDH-mutant gliomas, differences between non-enhancing tumour and brain microdialysate were modest and less consistent. The enhancing, but not the non-enhancing glioma metabolome, was significantly enriched for plasma-associated metabolites largely comprising amino acids and carnitines. Our findings suggest that metabolite diffusion through a disrupted blood-brain barrier may largely define the enhancing extracellular glioma metabolome. Future studies will determine how the altered extracellular metabolome impacts glioma behaviour.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/metabolismo , Barreira Hematoencefálica/metabolismo , Glioma/metabolismo , Encéfalo/metabolismo , Metaboloma , Microambiente Tumoral
4.
Mol Cancer Res ; 20(6): 938-948, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35191501

RESUMO

Glioblastoma (GBM) is a rapidly fatal malignancy typically treated with radiation and temozolomide (TMZ), an alkylating chemotherapeutic. These cytotoxic therapies cause oxidative stress and DNA damage, yielding a senescent-like state of replicative arrest in surviving tumor cells. Unfortunately, recurrence is inevitable and may be driven by surviving tumor cells eventually escaping senescence. A growing number of so-called "senolytic" drugs have been recently identified that are defined by their ability to selectively eliminate senescent cells. A growing inventory of senolytic drugs is under consideration for several diseases associated with aging, inflammation, DNA damage, as well as cancer. Ablation of senescent tumor cells after radiation and chemotherapy could help mitigate recurrence by decreasing the burden of residual tumor cells at risk of recurrence. This strategy has not been previously explored for GBM. We evaluated a panel of 10 previously described senolytic drugs to determine whether any could exhibit selective activity against human GBM persisting after exposure to radiation or TMZ. Three of the 10 drugs have known activity against BCL-XL and preferentially induced apoptosis in radiated or TMZ-treated glioma. This senolytic activity was observed in 12 of 12 human GBM cell lines. Efficacy could not be replicated with BCL-2 inhibition or senolytic agents acting against other putative senolytic targets. Knockdown of BCL-XL decreased survival of radiated GBM cells, whereas knockdown of BCL-2 or BCL-W yielded no senolytic effect. IMPLICATIONS: These findings imply that molecularly heterogeneous GBM lines share selective senescence-induced BCL-XL dependency increase the significance and translational relevance of the senolytic therapy for latent glioma.


Assuntos
Glioblastoma , Apoptose , Linhagem Celular Tumoral , Senescência Celular , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Senoterapia , Temozolomida/farmacologia
5.
J Neurosci Methods ; 363: 109321, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390758

RESUMO

BACKGROUND: Microdialysis is a well validated sampling technique that can be used for pharmacokinetic studies of oncological drugs targeting the central nervous system. This technique has also been applied to evaluate tumor metabolism and identify pharmacodynamic biomarkers of drug activity. Despite the potential utility of microdialysis for therapeutic discovery, variability in tumor size and location hamper routine use of microdialysis as a preclinical tool. Quantitative validation of microdialysis membrane location relative to radiographically evident tumor regions could facilitate rigorous preclinical studies. However, a widely accessible standardized workflow for preclinical catheter placement and validation is needed. NEW METHOD: We provide methods for a workflow to yield tailored placement of microdialysis probes within a murine intracranial tumor and illustrate in an IDH1-mutant patient-derived xenograft (PDX) model. This detailed workflow uses a freely available on-line tool built within 3D-slicer freeware to target microdialysis probe placement within the tumor core and validate probe placement fully within the tumor. RESULTS: We illustrate use of this workflow to validate microdialysis probe location relative to implanted IDH1-mutant PDXs, using the microdialysis probes to quantify levels of extracellular onco-metabolite D-2 hydroxyglutarate. COMPARISON WITH EXISTING METHODS: Previous methods have used 3D slicer to reliably measure tumor volumes. Prior microdialysis studies have targeted expected tumor locations without validation. CONCLUSIONS: The new method offers a streamlined and freely available workflow in 3D slicer to optimize and validate microdialysis probe placement within a murine brain tumor.


Assuntos
Neoplasias Encefálicas , Animais , Sistema Nervoso Central , Humanos , Camundongos , Microdiálise
6.
Front Oncol ; 8: 656, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30854331

RESUMO

Glioblastoma is the most common adult primary brain tumor and carries a dismal prognosis. Radiation is a standard first-line therapy, typically deployed following maximal safe surgical debulking, when possible, in combination with cytotoxic chemotherapy. For other systemic cancers, standard of care is being transformed by immunotherapies, including checkpoint-blocking antibodies targeting CTLA-4 and PD-1/PD-L1, with potential for long-term remission. Ongoing studies are evaluating the role of immunotherapies for GBM. Despite dramatic responses in some cases, randomized trials to date have not met primary outcomes. Challenges have been attributed in part to the immunologically "cold" nature of glioblastoma relative to other malignancies successfully treated with immunotherapy. Radiation may serve as a mechanism to improve tumor immunogenicity. In this review, we critically evaluate current evidence regarding radiation as a synergistic facilitator of immunotherapies through modulation of both the innate and adaptive immune milieu. Although current preclinical data encourage efforts to harness synergistic biology between radiation and immunotherapy, several practical and scientific challenges remain. Moreover, insights from radiation biology may unveil additional novel opportunities to help mobilize immunity against GBM.

7.
Mol Ther ; 25(4): 962-975, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28237836

RESUMO

Systemic viroimmunotherapy activates endogenous innate and adaptive immune responses against both viral and tumor antigens. We have shown that therapy with vesicular stomatitis virus (VSV) engineered to express a tumor-associated antigen activates antigen-specific adoptively transferred T cells (adoptive cell therapy, ACT) in vivo to generate effective therapy. The overall goal of this study was to phenotypically characterize the immune response to VSV+ACT therapy and use the information gained to rationally improve combination therapy. We observed rapid expansion of blood CD8+ effector cells acutely following VSV therapy with markedly high expression of the immune checkpoint molecules PD-1 and TIM-3. Using these data, we tested a treatment schedule incorporating mAb immune checkpoint inhibitors with VSV+ACT treatment. Unlike clinical scenarios, we delivered therapy at early time points following tumor establishment and treatment. Our goal was to potentiate the immune response generated by VSV therapy to achieve durable control of metastatic disease. Despite the high frequency of endogenous PD-1+ TIM-3+ CD8+ T cells following virus administration, antibody blockade did not improve survival. These findings provide highly significant information about response kinetics to viroimmunotherapy and juxtapose the clinical use of checkpoint inhibitors against chronically dysfunctional T cells and the acute T cell response to oncolytic viruses.


Assuntos
Transferência Adotiva , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Vetores Genéticos/genética , Imunoterapia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Vírus da Estomatite Vesicular Indiana/genética , Animais , Modelos Animais de Doenças , Feminino , Receptor Celular 2 do Vírus da Hepatite A/antagonistas & inibidores , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Memória Imunológica , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Camundongos , Mortalidade , Metástase Neoplásica , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Resultado do Tratamento
8.
Mol Ther Oncolytics ; 3: 16030, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933315

RESUMO

We showed previously that therapy with Vesicular Stomatitis Virus (VSV) expressing tumor-associated proteins eradicates established tumors. We show here that when cellular cDNA were cloned into VSV which retained their own poly-A signal, viral species emerged in culture which had deleted the cellular poly-A signal and also contained a truncated form of the protein coding sequence. Typically, the truncation occurred such that a Tyrosine-encoding codon was converted into a STOP codon. We believe that the truncation of tumor-associated proteins expressed from VSV in this way occurred to preserve the ability of the virus to replicate efficiently. Truncated cDNA expressed from VSV were significantly more effective than full length cDNA in treating established tumors. Moreover, tumor therapy with truncated cDNA was completely abolished by depletion of CD4+ T cells, whereas therapy with full length cDNA was CD8+ T cell dependent. These data show that the type/potency of antitumor immune responses against self-tumor-associated proteins can be manipulated in vivo through the nature of the self protein (full length or truncated). Therefore, in addition to generation of neoantigens through sequence mutation, immunological tolerance against self-tumor-associated proteins can be broken through manipulation of protein integrity, allowing for rational design of better self-immunogens for cancer immunotherapy.

9.
Neuro Oncol ; 18(4): 518-27, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26409567

RESUMO

BACKGROUND: Systemic delivery of a complementary cDNA library expressed from the vesicular stomatitis virus (VSV) treats tumors by vaccinating against a wide range of tumor associated antigens (TAAs). For subcutaneous B16 melanomas, therapy was achieved using a specific combination of self-TAAs (neuroblastoma-Ras, cytochrome c, and tyrosinase-related protein 1) expressed from VSV. However, for intracranial B16 tumors, a different combination was therapeutic (consisting of VSV-expressed hypoxia-inducible factor [HIF]-2α, Sox-10, c-Myc, and tyrosinase-related protein 1). Therefore, we tested the hypothesis that tumors of different histological types growing in the brain share a common immunogenic signature which can be exploited for immunotherapy. METHODS: Syngeneic tumors, including GL261 gliomas, in the brains of immune competent mice were analyzed for their antigenic profiles or were treated with systemic viroimmunotherapy. RESULTS: Several different histological types of tumors growing intracranially, as well as freshly resected human brain tumor explants, expressed a HIF-2α(Hi) phenotype imposed by brain-derived CD11b+ cells. This location-specific antigen expression was exploited therapeutically against intracranial GL261 gliomas using systemically delivered VSV expressing HIF-2α, Sox-10, and c-Myc. Viroimmunotherapy was enhanced by immune checkpoint inhibitors, associated with the de-repression of antitumor T-helper cell type 1 (Th1) interferon-γ and Th17 T cell responses. CONCLUSIONS: Since different tumor types growing in the same location in the brain share a location-specific phenotype, we suggest that antigen-specific immunotherapies should be based upon expression of both histological type-specific tumor antigens and location-specific antigens. Our findings support clinical application of VSV-TAA therapy with checkpoint inhibition for aggressive brain tumors and highlight the importance of the intracranial microenvironment in sculpting a location-specific profile of tumor antigen expression.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias Encefálicas/terapia , Pontos de Checagem do Ciclo Celular/imunologia , Glioma/terapia , Imunoterapia , Melanoma Experimental/terapia , Terapia Viral Oncolítica , Vesiculovirus/fisiologia , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Ciclo Celular , Terapia Combinada , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Glioma/imunologia , Glioma/metabolismo , Glioma/patologia , Humanos , Interferon gama , Masculino , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Mol Ther ; 24(1): 166-74, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26310630

RESUMO

Oncolytic reovirus can be delivered both systemically and intratumorally, in both preclinical models and in early phase clinical trials. Reovirus has direct oncolytic activity against a variety of tumor types and antitumor activity is directly associated with immune activation by virus replication in tumors. Immune mechanisms of therapy include both innate immune activation against virally infected tumor cells, and the generation of adaptive antitumor immune responses as a result of in vivo priming against tumor-associated antigens. We tested the combination of local oncolytic reovirus therapy with systemic immune checkpoint inhibition. We show that treatment of subcutaneous B16 melanomas with a combination of intravenous (i.v.) anti-PD-1 antibody and intratumoral (i.t.) reovirus significantly enhanced survival of mice compared to i.t. reovirus (P < 0.01) or anti-PD-1 therapy alone. In vitro immune analysis demonstrated that checkpoint inhibition improved the ability of NK cells to kill reovirus-infected tumor cells, reduced T(reg) activity, and increased the adaptive CD8(+) T-cell-dependent antitumor T-cell response. PD-1 blockade also enhanced the antiviral immune response but through effector mechanisms which overlapped with but also differed from those affecting the antitumor response. Therefore, combination with checkpoint inhibition represents a readily translatable next step in the clinical development of reovirus viroimmunotherapy.


Assuntos
Anticorpos/administração & dosagem , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Receptor de Morte Celular Programada 1/imunologia , Reoviridae/fisiologia , Imunidade Adaptativa , Animais , Anticorpos/uso terapêutico , Terapia Combinada , Imunidade Inata , Melanoma Experimental/mortalidade , Camundongos , Terapia Viral Oncolítica , Vírus Oncolíticos/fisiologia , Análise de Sobrevida , Resultado do Tratamento
11.
Viruses ; 7(11): 5889-901, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26580645

RESUMO

Oncolytic viruses represent a diverse class of replication competent viruses that curtail tumor growth. These viruses, through their natural ability or through genetic modifications, can selectively replicate within tumor cells and induce cell death while leaving normal cells intact. Apart from the direct oncolytic activity, these viruses mediate tumor cell death via the induction of innate and adaptive immune responses. The field of oncolytic viruses has seen substantial advancement with the progression of numerous oncolytic viruses in various phases of clinical trials. Tumors employ a plethora of mechanisms to establish growth and subsequently metastasize. These include evasion of immune surveillance by inducing up-regulation of checkpoint proteins which function to abrogate T cell effector functions. Currently, antibodies blocking checkpoint proteins such as anti-cytotoxic T-lymphocyte antigen-4 (CTLA-4) and anti-programmed cell death-1 (PD-1) have been approved to treat cancer and shown to impart durable clinical responses. These antibodies typically need pre-existing active immune tumor microenvironment to establish durable clinical outcomes and not every patient responds to these therapies. This review provides an overview of published pre-clinical studies demonstrating superior therapeutic efficacy of combining oncolytic viruses with checkpoint blockade compared to monotherapies. These studies provide compelling evidence that oncolytic therapy can be potentiated by coupling it with checkpoint therapies.


Assuntos
Imunoterapia/métodos , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Terapia Combinada/métodos , Humanos , Resultado do Tratamento
12.
Int J Radiat Oncol Biol Phys ; 93(3): 577-87, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26461000

RESUMO

PURPOSE: The oligometastatic state is an intermediate state between a malignancy that can be completely eradicated with conventional modalities and one in which a palliative approach is undertaken. Clinically, high rates of local tumor control are possible with stereotactic ablative radiation therapy (SABR), using precisely targeted, high-dose, low-fraction radiation therapy. However, in oligometastatic melanoma, virtually all patients develop progression systemically at sites not initially treated with ablative radiation therapy that cannot be managed with conventional chemotherapy and immunotherapy. We have demonstrated in mice that intravenous administration of vesicular stomatitis virus (VSV) expressing defined tumor-associated antigens (TAAs) generates systemic immune responses capable of clearing established tumors. Therefore, in the present preclinical study, we tested whether the combination of systemic VSV-mediated antigen delivery and SABR would be effective against oligometastatic disease. METHODS AND MATERIALS: We generated a model of oligometastatic melanoma in C57BL/6 immunocompetent mice and then used a combination of SABR and systemically administered VSV-TAA viral immunotherapy to treat both local and systemic disease. RESULTS: Our data showed that SABR generates excellent control or cure of local, clinically detectable, and accessible tumor through direct cell ablation. Also, the immunotherapeutic activity of systemically administered VSV-TAA generated T-cell responses that cleared subclinical metastatic tumors. We also showed that SABR induced weak T-cell-mediated tumor responses, which, particularly if boosted by VSV-TAA, might contribute to control of local and systemic disease. In addition, VSV-TAA therapy alone had significant effects on control of both local and metastatic tumors. CONCLUSIONS: We have shown in the present preliminary murine study using a single tumor model that this approach represents an effective, complementary combination therapy model that addresses the need for both systemic and local control in oligometastatic melanoma.


Assuntos
Imunoterapia/métodos , Melanoma Experimental/terapia , Terapia Viral Oncolítica/métodos , Radiocirurgia/métodos , Linfócitos T/imunologia , Vesiculovirus/imunologia , Animais , Antígenos de Neoplasias/metabolismo , Terapia Combinada/métodos , Imunidade Celular , Imunocompetência , Injeções Intravenosas , Ativação Linfocitária , Melanoma Experimental/imunologia , Melanoma Experimental/secundário , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Transplante de Neoplasias/métodos , Estatísticas não Paramétricas , Irradiação Corporal Total
13.
J Virol ; 89(15): 7944-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25995245

RESUMO

UNLABELLED: Oncolytic viruses (OV) preferentially kill cancer cells due in part to defects in their antiviral responses upon exposure to type I interferons (IFNs). However, IFN responsiveness of some tumor cells confers resistance to OV treatment. The human type I IFNs include one IFN-ß and multiple IFN-α subtypes that share the same receptor but are capable of differentially inducing biological responses. The role of individual IFN subtypes in promoting tumor cell resistance to OV is addressed here. Two human IFNs which have been produced for clinical use, IFN-α2a and IFN-ß, were compared for activity in protecting human head and neck squamous cell carcinoma (HNSCC) lines from oncolysis by vesicular stomatitis virus (VSV). Susceptibility of HNSCC lines to killing by VSV varied. VSV infection induced increased production of IFN-ß in resistant HNSCC cells. When added exogenously, IFN-ß was significantly more effective at protecting HNSCC cells from VSV oncolysis than was IFN-α2a. In contrast, normal keratinocytes and endothelial cells were protected equivalently by both IFN subtypes. Differential responsiveness of tumor cells to IFN-α and -ß was further supported by the finding that autocrine IFN-ß but not IFN-α promoted survival of HNSCC cells during persistent VSV infection. Therefore, IFN-α and -ß differentially affect VSV oncolysis, justifying the evaluation and comparison of IFN subtypes for use in combination with VSV therapy. Pairing VSV with IFN-α2a may enhance selectivity of oncolytic VSV therapy for HNSCC by inhibiting VSV replication in normal cells without a corresponding inhibition in cancer cells. IMPORTANCE: There has been a great deal of progress in the development of oncolytic viruses. However, a major problem is that individual cancers vary in their sensitivity to oncolytic viruses. In many cases this is due to differences in their production and response to interferons (IFNs). The experiments described here compared the responses of head and neck squamous cell carcinoma cell lines to two IFN subtypes, IFN-α2a and IFN-ß, in protection from oncolytic vesicular stomatitis virus. We found that IFN-α2a was significantly less protective for cancer cells than was IFN-ß, whereas normal cells were equivalently protected by both IFNs. These results suggest that from a therapeutic standpoint, selectivity for cancer versus normal cells may be enhanced by pairing VSV with IFN-α2a.


Assuntos
Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/terapia , Interferon-alfa/imunologia , Interferon beta/imunologia , Terapia Viral Oncolítica , Vírus da Estomatite Vesicular Indiana/fisiologia , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Interferon alfa-2 , Interferon-alfa/genética , Interferon beta/genética , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vírus da Estomatite Vesicular Indiana/genética
14.
Mol Ther ; 23(5): 845-856, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25544599

RESUMO

We used a VSV-cDNA library to treat recurrent melanoma, identifying immunogenic antigens, allowing us to target recurrences with immunotherapy or chemotherapy. Primary B16 melanoma tumors were induced to regress by frontline therapy. Mice with recurrent tumors were treated with VSV-cDNA immunotherapy. A Th17 recall response was used to screen the VSV-cDNA library for individual viruses encoding rejection antigens, subsequently targeted using immunotherapy or chemotherapy. Recurrent tumors were effectively treated with a VSV-cDNA library using cDNA from recurrent B16 tumors. Recurrence-associated rejection antigens identified included Topoisomerase-IIα, YB-1, cdc7 kinase, and BRAF. Fourteen out of 16 recurrent tumors carried BRAF mutations (595-605 region) following frontline therapy, even though the parental B16 tumors were BRAF wild type. The emergence of mutated BRAF-containing recurrences served as an excellent target for BRAF-specific immune-(VSV-BRAF), or chemo-(PLX-4720) therapies. Successful PLX-4720 therapy of recurrent tumors was associated with the development of a broad spectrum of T-cell responses. VSV-cDNA technology can be used to identify recurrence specific antigens. Emergence of mutated BRAF may be a major effector of melanoma recurrence which could serve as a target for chemo or immune therapy. This study suggests a rationale for offering patients with initially wild-type BRAF melanomas an additional biopsy to screen for mutant BRAF upon recurrence.


Assuntos
Melanoma/genética , Melanoma/patologia , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Antígenos de Neoplasias/imunologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Sequência de Bases , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Ganciclovir/farmacologia , Expressão Gênica , Humanos , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/farmacologia , Masculino , Melanoma/tratamento farmacológico , Melanoma/imunologia , Melanoma Experimental , Camundongos , Dados de Sequência Molecular , Recidiva Local de Neoplasia , Proteínas Proto-Oncogênicas B-raf/química , Timidina Quinase/genética
15.
Mol Ther ; 22(11): 1936-48, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25059678

RESUMO

Previously, we showed that vesicular stomatitis virus (VSV) engineered to express a cDNA library from human melanoma cells (ASMEL, Altered Self Melanoma Epitope Library) was an effective systemic therapy to treat subcutaneous (s.c.) murine B16 melanomas. Here, we show that intravenous treatment with the same ASMEL VSV-cDNA library was an effective treatment for established intra-cranial (i.c.) melanoma brain tumors. The optimal combination of antigens identified from the ASMEL which treated s.c. B16 tumors (VSV-N-RAS+VSV-CYTC-C+VSV-TYRP-1) was ineffective against i.c. B16 brain tumors. In contrast, combination of VSV-expressed antigens-VSV-HIF-2α+VSV-SOX-10+VSV-C-MYC+VSV-TYRP1-from ASMEL which was highly effective against i.c. B16 brain tumors, had no efficacy against the same tumors growing subcutaneously. Correspondingly, i.c. B16 tumors expressed a HIF-2α(Hi), SOX-10(Hi), c-myc(Hi), TYRP1, N-RAS(lo)Cytc(lo) antigen profile, which differed significantly from the HIF-2α(lo), SOX-10(lo), c-myc(lo), TYRP1, N-RAS(Hi)Cytc(Hi) phenotype of s.c. B16 tumors, and was imposed upon the tumor cells by CD11b(+) cells within the local brain tumor microenvironment. Combining T-cell costimulation with systemic VSV-cDNA treatment, long-term cures of mice with established i.c. tumors were achieved in about 75% of mice. Our data show that the anatomical location of a tumor profoundly affects the profile of antigens that it expresses.


Assuntos
Antígenos Virais de Tumores/metabolismo , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Vesiculovirus/genética , Administração Intravenosa , Animais , Linhagem Celular Tumoral , Biblioteca Gênica , Vetores Genéticos/administração & dosagem , Humanos , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral , Vesiculovirus/metabolismo
16.
J Virol ; 87(21): 11730-40, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23986580

RESUMO

Inhibition of host-directed gene expression by the matrix (M) protein of vesicular stomatitis virus (VSV) effectively blocks host antiviral responses, promotes virus replication, and disables the host cell. However, dendritic cells (DC) have the capacity to resist these effects and remain functional during VSV infection. Here, the mechanisms of DC resistance to M protein and their subsequent maturation were addressed. Flt3L-derived murine bone marrow dendritic cells (FDC), which phenotypically resemble resident splenic DC, continued to synthesize cellular proteins and matured during single-cycle (high-multiplicity) and multicycle (low-multiplicity) infection with VSV. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-derived myeloid DC (GDC), which are susceptible to M protein effects, were nevertheless capable of maturing, but the response was delayed and occurred only during multicycle infection. FDC resistance was manifested early and was type I interferon (IFN) receptor (IFNAR) and MyD88 independent, but sustained resistance required IFNAR. MyD88-dependent signaling contributed to FDC maturation during single-cycle infection but was dispensable during multicycle infection. Similar to FDC, splenic DC were capable of maturing in vivo during the first 24 h of infection with VSV, and neither Toll-like receptor 7 (TLR7) nor MyD88 was required. We conclude that FDC resistance to M protein is controlled by an intrinsic, MyD88-independent mechanism that operates early in infection and is augmented later in infection by type I IFN. In contrast, while GDC are not intrinsically resistant, they can acquire resistance during multicycle infection. In vivo, splenic DC resist the inhibitory effects of VSV, and as in multicycle FDC infection, MyD88-independent signaling events control their maturation.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/virologia , Interações Hospedeiro-Patógeno , Vesiculovirus/imunologia , Proteínas da Matriz Viral/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
17.
PLoS Pathog ; 8(9): e1002929, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23028327

RESUMO

Vesicular stomatitis virus (VSV) suppresses antiviral responses in infected cells by inhibiting host gene expression at multiple levels, including transcription, nuclear cytoplasmic transport, and translation. The inhibition of host gene expression is due to the activity of the viral matrix (M) protein. Previous studies have shown that M protein interacts with host proteins Rae1 and Nup98 that have been implicated in regulating nuclear-cytoplasmic transport. However, Rae1 function is not essential for host mRNA transport, raising the question of how interaction of a viral protein with a host protein that is not essential for gene expression causes a global inhibition at multiple levels. We tested the hypothesis that there may be multiple M protein-Rae1 complexes involved in inhibiting host gene expression at multiple levels. Using size exclusion chromatography and sedimentation velocity analysis, it was determined that Rae1 exists in high, intermediate, and low molecular weight complexes. The intermediate molecular weight complexes containing Nup98 interacted most efficiently with M protein. The low molecular weight form also interacted with M protein in cells that overexpress Rae1 or cells in which Nup98 expression was silenced. Silencing Rae1 expression had little if any effect on nuclear accumulation of host mRNA in VSV-infected cells, nor did it affect VSV's ability to inhibit host translation. Instead, silencing Rae1 expression reduced the ability of VSV to inhibit host transcription. M protein interacted efficiently with Rae1-Nup98 complexes associated with the chromatin fraction of host nuclei, consistent with an effect on host transcription. These results support the idea that M protein-Rae1 complexes serve as platforms to promote the interaction of M protein with other factors involved in host transcription. They also support the idea that Rae1-Nup98 complexes play a previously under-appreciated role in regulation of transcription.


Assuntos
Proteínas Associadas à Matriz Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Transcrição Gênica , Vírus da Estomatite Vesicular Indiana/metabolismo , Proteínas da Matriz Viral/metabolismo , Transporte Ativo do Núcleo Celular , Linhagem Celular , Expressão Gênica , Células HEK293 , Humanos , Proteínas Associadas à Matriz Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Vírus da Estomatite Vesicular Indiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...