Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 623(7986): 301-306, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938707

RESUMO

Electronic flat-band materials host quantum states characterized by a quenched kinetic energy. These flat bands are often conducive to enhanced electron correlation effects and emergent quantum phases of matter1. Long studied in theoretical models2-4, these systems have received renewed interest after their experimental realization in van der Waals heterostructures5,6 and quasi-two-dimensional (2D) crystalline materials7,8. An outstanding experimental question is if such flat bands can be realized in three-dimensional (3D) networks, potentially enabling new materials platforms9,10 and phenomena11-13. Here we investigate the C15 Laves phase metal CaNi2, which contains a nickel pyrochlore lattice predicted at a model network level to host a doubly-degenerate, topological flat band arising from 3D destructive interference of electronic hopping14,15. Using angle-resolved photoemission spectroscopy, we observe a band with vanishing dispersion across the full 3D Brillouin zone that we identify with the pyrochlore flat band as well as two additional flat bands that we show arise from multi-orbital interference of Ni d-electrons. Furthermore, we demonstrate chemical tuning of the flat-band manifold to the Fermi level that coincides with enhanced electronic correlations and the appearance of superconductivity. Extending the notion of intrinsic band flatness from 2D to 3D, this provides a potential pathway to correlated behaviour predicted for higher-dimensional flat-band systems ranging from tunable topological15 to fractionalized phases16.

2.
ACS Nano ; 17(21): 20999-21005, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37708240

RESUMO

Controlling defect densities in SrRuO3 films is the cornerstone for probing the intricate relationship among its structural, electrical, and magnetic properties. We combine film growth, electrical transport, and magnetometry to demonstrate the adsorption-controlled growth of phase-pure, epitaxial, and stoichiometric SrRuO3 films on SrTiO3 (001) substrates using solid source metal-organic molecular beam epitaxy. Across the growth window, we show that the anomalous Hall curves arise from two distinct magnetic domains. Domains with similar anomalous Hall polarities generate the stepped feature observed within the growth window, and those with opposite polarities produce the hump-like feature present exclusively in the highly Ru-poor film. We achieve a residual resistivity ratio (RRR = ρ300K/ρ2K) of 87 in a 50 nm-thick, coherently strained, and stoichiometric SrRuO3 film, the highest reported value to date on SrTiO3 (001) substrates. We hypothesize further improvements in the RRR through strain engineering to control the tetragonal-to-orthorhombic phase transformation and the domain structure of SrRuO3 films.

3.
ACS Nano ; 16(6): 8812-8819, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35436095

RESUMO

Monoclinic ß-Ga2O3, an ultra-wide bandgap semiconductor, has seen enormous activity in recent years. However, the fundamental study of the plasmon-phonon coupling that dictates electron transport properties has not been possible due to the difficulty in achieving higher carrier density (without introducing chemical disorder). Here, we report a highly reversible, electrostatic doping of ß-Ga2O3 films with tunable carrier densities using ion-gel-gated electric double-layer transistor configuration. Combining temperature-dependent Hall effect measurements, transport modeling, and comprehensive mobility calculations using ab initio based electron-phonon scattering rates, we demonstrate an increase in the room-temperature mobility to 201 cm2 V-1 s-1 followed by a surprising decrease with an increasing carrier density due to the plasmon-phonon coupling. The modeling and experimental data further reveal an important "antiscreening" (of electron-phonon interaction) effect arising from dynamic screening from the hybrid plasmon-phonon modes. Our calculations show that a significantly higher room-temperature mobility of 300 cm2 V-1 s-1 is possible if high electron densities (>1020 cm-3) with plasmon energies surpassing the highest energy LO mode can be realized. As Ga2O3 and other polar semiconductors play an important role in several device applications, the fundamental understanding of the plasmon-phonon coupling can lead to the enhancement of mobility by harnessing the dynamic screening of the electron-phonon interactions.

4.
Nano Lett ; 21(23): 10006-10011, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34807629

RESUMO

Hysteretic magnetoresistance (MR) is often used as a signature of ferromagnetism in conducting oxide films and heterostructures. Here, magnetotransport is investigated in a nonmagnetic La-doped SrSnO3 film. A 12 nm La:SrSnO3/2 nm SrSnO3/GdScO3 (110) film with insulating behavior exhibited a robust hysteresis loop in the MR at T < 5 K accompanied by an anomaly at ∼±3 T at T < 2.5 K. Furthermore, MR with the field in-plane yielded a value exceeding 100% at 1.8 K. Using detailed temperature-, angle- and magnetic field-dependent resistance measurements, we illustrate the origin of hysteresis is not due to magnetism in the film but rather is associated with the magnetocaloric effect of the substrate. Given GdScO3 and similar substrates are commonly used, this work highlights the importance of thermal coupling to processes in the substrates which must be carefully accounted for in the data interpretation for heterostructures utilizing these substrates.

5.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34353910

RESUMO

Advances in physical vapor deposition techniques have led to a myriad of quantum materials and technological breakthroughs, affecting all areas of nanoscience and nanotechnology which rely on the innovation in synthesis. Despite this, one area that remains challenging is the synthesis of atomically precise complex metal oxide thin films and heterostructures containing "stubborn" elements that are not only nontrivial to evaporate/sublimate but also hard to oxidize. Here, we report a simple yet atomically controlled synthesis approach that bridges this gap. Using platinum and ruthenium as examples, we show that both the low vapor pressure and the difficulty in oxidizing a "stubborn" element can be addressed by using a solid metal-organic compound with significantly higher vapor pressure and with the added benefits of being in a preoxidized state along with excellent thermal and air stability. We demonstrate the synthesis of high-quality single crystalline, epitaxial Pt, and RuO2 films, resulting in a record high residual resistivity ratio (=27) in Pt films and low residual resistivity, ∼6 µΩ·cm, in RuO2 films. We further demonstrate, using SrRuO3 as an example, the viability of this approach for more complex materials with the same ease and control that has been largely responsible for the success of the molecular beam epitaxy of III-V semiconductors. Our approach is a major step forward in the synthesis science of "stubborn" materials, which have been of significant interest to the materials science and the condensed matter physics community.

6.
ACS Appl Mater Interfaces ; 10(22): 19218-19225, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29733190

RESUMO

We report a more than 10-fold enhancement of the piezoelectric coefficient d33 of polycrystalline CH3NH3PbI3 (MAPbI3) films when interfacing them with ferroelectric PbZr0.2Ti0.8O3 (PZT). Piezoresponse force microscopy (PFM) studies reveal [Formula: see text] values of 0.3-0.4 pm/V for MAPbI3 deposited on Au, indium tin oxide, and SrTiO3 surfaces, with small phase angle fluctuating at length scales smaller than the grain size. In sharp contrast, on samples prepared on epitaxial PZT films, we observe large-scale polar domains exhibiting clear, close to 180° PFM phase contrasts, pointing to polar axes along the film normal. By separating the piezoresponse contributions from the MAPbI3 and PZT layers, we extract a significantly higher [Formula: see text] of ∼4 pm/V, which is attributed to the enhanced alignment of the MA molecular dipoles promoted by the unbalanced surface potential of PZT. We also discuss the effect of the interfacial screening layer on the preferred polar direction.

7.
Nano Lett ; 16(10): 6460-6466, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27662071

RESUMO

Polarization switching in ferroelectric capacitors is typically realized by application of an electrical bias to the capacitor electrodes and occurs via a complex process of domain structure reorganization. As the domain evolution in real devices is governed by the distribution of the nucleation centers, obtaining a domain structure of a desired configuration by electrical pulsing is challenging, if not impossible. Recent discovery of polarization reversal via the flexoelectric effect has opened a possibility for deterministic control of polarization in ferroelectric capacitors. In this paper, we demonstrate mechanical writing of arbitrary-shaped nanoscale domains in thin-film ferroelectric capacitors with graphene electrodes facilitated by a strain gradient induced by a tip of an atomic force microscope (AFM). A phase-field modeling prediction of a strong effect of graphene thickness on the threshold load required to initiate mechanical switching has been confirmed experimentally. Deliberate voltage-free domain writing represents a viable approach for development of functional devices based on domain topology and electronic properties of the domains and domain walls.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...