Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Front Radiol ; 4: 1335349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38654762

RESUMO

Background: Chronic pulmonary embolism (PE) may result in pulmonary hypertension (CTEPH). Automated CT pulmonary angiography (CTPA) interpretation using artificial intelligence (AI) tools has the potential for improving diagnostic accuracy, reducing delays to diagnosis and yielding novel information of clinical value in CTEPH. This systematic review aimed to identify and appraise existing studies presenting AI tools for CTPA in the context of chronic PE and CTEPH. Methods: MEDLINE and EMBASE databases were searched on 11 September 2023. Journal publications presenting AI tools for CTPA in patients with chronic PE or CTEPH were eligible for inclusion. Information about model design, training and testing was extracted. Study quality was assessed using compliance with the Checklist for Artificial Intelligence in Medical Imaging (CLAIM). Results: Five studies were eligible for inclusion, all of which presented deep learning AI models to evaluate PE. First study evaluated the lung parenchymal changes in chronic PE and two studies used an AI model to classify PE, with none directly assessing the pulmonary arteries. In addition, a separate study developed a CNN tool to distinguish chronic PE using 2D maximum intensity projection reconstructions. While another study assessed a novel automated approach to quantify hypoperfusion to help in the severity assessment of CTEPH. While descriptions of model design and training were reliable, descriptions of the datasets used in training and testing were more inconsistent. Conclusion: In contrast to AI tools for evaluation of acute PE, there has been limited investigation of AI-based approaches to characterising chronic PE and CTEPH on CTPA. Existing studies are limited by inconsistent reporting of the data used to train and test their models. This systematic review highlights an area of potential expansion for the field of AI in medical image interpretation.There is limited knowledge of A systematic review of artificial intelligence tools for chronic pulmonary embolism in CT. This systematic review provides an assessment on research that examined deep learning algorithms in detecting CTEPH on CTPA images, the number of studies assessing the utility of deep learning on CTPA in CTEPH was unclear and should be highlighted.

2.
Radiology ; 310(2): e231718, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38319169

RESUMO

Background There is clinical need to better quantify lung disease severity in pulmonary hypertension (PH), particularly in idiopathic pulmonary arterial hypertension (IPAH) and PH associated with lung disease (PH-LD). Purpose To quantify fibrosis on CT pulmonary angiograms using an artificial intelligence (AI) model and to assess whether this approach can be used in combination with radiologic scoring to predict survival. Materials and Methods This retrospective multicenter study included adult patients with IPAH or PH-LD who underwent incidental CT imaging between February 2007 and January 2019. Patients were divided into training and test cohorts based on the institution of imaging. The test cohort included imaging examinations performed in 37 external hospitals. Fibrosis was quantified using an established AI model and radiologically scored by radiologists. Multivariable Cox regression adjusted for age, sex, World Health Organization functional class, pulmonary vascular resistance, and diffusing capacity of the lungs for carbon monoxide was performed. The performance of predictive models with or without AI-quantified fibrosis was assessed using the concordance index (C index). Results The training and test cohorts included 275 (median age, 68 years [IQR, 60-75 years]; 128 women) and 246 (median age, 65 years [IQR, 51-72 years]; 142 women) patients, respectively. Multivariable analysis showed that AI-quantified percentage of fibrosis was associated with an increased risk of patient mortality in the training cohort (hazard ratio, 1.01 [95% CI: 1.00, 1.02]; P = .04). This finding was validated in the external test cohort (C index, 0.76). The model combining AI-quantified fibrosis and radiologic scoring showed improved performance for predicting patient mortality compared with a model including radiologic scoring alone (C index, 0.67 vs 0.61; P < .001). Conclusion Percentage of lung fibrosis quantified on CT pulmonary angiograms by an AI model was associated with increased risk of mortality and showed improved performance for predicting patient survival when used in combination with radiologic severity scoring compared with radiologic scoring alone. © RSNA, 2024 Supplemental material is available for this article.


Assuntos
Hipertensão Pulmonar , Fibrose Pulmonar , Radiologia , Adulto , Idoso , Feminino , Humanos , Inteligência Artificial , Hipertensão Pulmonar/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Estudos Retrospectivos
3.
ERJ Open Res ; 9(4)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37650085

RESUMO

Background: Hyperpolarised 129-xenon (129Xe) magnetic resonance imaging (MRI) shows promise in monitoring the progression of idiopathic pulmonary fibrosis (IPF) due to the lack of ionising radiation and the ability to quantify functional impairment. Diffusion-weighted (DW)-MRI with hyperpolarised gases can provide information about lung microstructure. The aims were to compare 129Xe DW-MRI measurements with pulmonary function tests (PFTs), and to assess whether they can detect early signs of disease progression in patients with newly diagnosed IPF. Methods: This is a prospective, single-centre, observational imaging study of patients presenting with IPF to Northern General Hospital (Sheffield, UK). Hyperpolarised 129Xe DW-MRI was performed at 1.5 T on a whole-body General Electric HDx scanner and PFTs were performed on the same day as the MRI scan. Results: There was an increase in global 129Xe apparent diffusion coefficient (ADC) between the baseline and 12-month visits (mean 0.043 cm2·s-1, 95% CI 0.040-0.047 cm2·s-1 versus mean 0.045 cm2·s-1, 95% CI 0.040-0.049 cm2·s-1; p=0.044; n=20), with no significant change in PFTs over the same time period. There was also an increase in 129Xe ADC in the lower zone (p=0.027), and an increase in 129Xe mean acinar dimension in the lower zone (p=0.033) between the baseline and 12-month visits. 129Xe DW-MRI measurements correlated strongly with diffusing capacity of the lung for carbon monoxide (% predicted), transfer coefficient of the lung for carbon monoxide (KCO) and KCO (% predicted). Conclusions: 129Xe DW-MRI measurements appear to be sensitive to early changes of microstructural disease that are consistent with progression in IPF at 12 months. As new drug treatments are developed, the ability to quantify subtle changes using 129Xe DW-MRI could be particularly valuable.

4.
Eur Respir J ; 62(2)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414419

RESUMO

BACKGROUND: Cardiac magnetic resonance (CMR) is the gold standard technique to assess biventricular volumes and function, and is increasingly being considered as an end-point in clinical studies. Currently, with the exception of right ventricular (RV) stroke volume and RV end-diastolic volume, there is only limited data on minimally important differences (MIDs) reported for CMR metrics. Our study aimed to identify MIDs for CMR metrics based on US Food and Drug Administration recommendations for a clinical outcome measure that should reflect how a patient "feels, functions or survives". METHODS: Consecutive treatment-naïve patients with pulmonary arterial hypertension (PAH) between 2010 and 2022 who had two CMR scans (at baseline prior to treatment and 12 months following treatment) were identified from the ASPIRE registry. All patients were followed up for 1 additional year after the second scan. For both scans, cardiac measurements were obtained from a validated fully automated segmentation tool. The MID in CMR metrics was determined using two distribution-based (0.5sd and minimal detectable change) and two anchor-based (change difference and generalised linear model regression) methods benchmarked to how a patient "feels" (emPHasis-10 quality of life questionnaire), "functions" (incremental shuttle walk test) or "survives" for 1-year mortality to changes in CMR measurements. RESULTS: 254 patients with PAH were included (mean±sd age 53±16 years, 79% female and 66% categorised as intermediate risk based on the 2022 European Society of Cardiology/European Respiratory Society risk score). We identified a 5% absolute increase in RV ejection fraction and a 17 mL decrease in RV end-diastolic or end-systolic volumes as the MIDs for improvement. Conversely, a 5% decrease in RV ejection fraction and a 10 mL increase in RV volumes were associated with worsening. CONCLUSIONS: This study establishes clinically relevant CMR MIDs for how a patient "feels, functions or survives" in response to PAH treatment. These findings provide further support for the use of CMR as a clinically relevant clinical outcome measure and will aid trial size calculations for studies using CMR.


Plain language summaryPulmonary arterial hypertension (PAH) is a disease of the vessels of the lung that causes their narrowing and stiffening. As a result, the heart pumping blood into these diseased lung vessels has to work harder and eventually gets worn out. PAH can affect patients' ability to function in daily activities and impact their quality of life. It also reduces their life expectancy dramatically. Patients are, therefore, often monitored and undergo several investigations to adapt treatment according to their situation. These investigations include a survey of how a patient feels (the emPHasis-10 questionnaire), functions (walking test) and how well the heart is coping with the disease (MRI of the heart). Until now, it is unclear how changes on MRI of the heart reflect changes in how a patient feels and functions. Our study identified patients that had the emPHasis-10 questionnaire, walking test and MRI of the heart at both the time of PAH diagnosis and one year later. This allowed us to compare how the changes in the different tests relate to each other. And because previous research identified thresholds for important changes in the emPHasis-10 questionnaire and the walking tests, we were able to use these tests as a benchmark for changes in the MRI of the heart. Our study identified thresholds for change on heart MRI that might indicate whether a patient has improved or worsened. This finding might have implications for how patients are monitored in clinical practice and future research on PAH treatments.


Assuntos
Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Masculino , Hipertensão Arterial Pulmonar/diagnóstico por imagem , Qualidade de Vida , Imageamento por Ressonância Magnética/métodos , Volume Sistólico/fisiologia , Hipertensão Pulmonar Primária Familiar , Função Ventricular Direita , Valor Preditivo dos Testes
5.
Chest ; 164(3): 700-716, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36965765

RESUMO

BACKGROUND: Microvascular abnormalities and impaired gas transfer have been observed in patients with COVID-19. The progression of pulmonary changes in these patients remains unclear. RESEARCH QUESTION: Do patients hospitalized with COVID-19 without evidence of architectural distortion on structural imaging exhibit longitudinal improvements in lung function measured by using 1H and 129Xe MRI between 6 and 52 weeks following hospitalization? STUDY DESIGN AND METHODS: Patients who were hospitalized with COVID-19 pneumonia underwent a pulmonary 1H and 129Xe MRI protocol at 6, 12, 25, and 51 weeks following hospital admission in a prospective cohort study between November 2020 and February 2022. The imaging protocol was as follows: 1H ultra-short echo time, contrast-enhanced lung perfusion, 129Xe ventilation, 129Xe diffusion-weighted, and 129Xe spectroscopic imaging of gas exchange. RESULTS: Nine patients were recruited (age 57 ± 14 [median ± interquartile range] years; six of nine patients were male). Patients underwent MRI at 6 (n = 9), 12 (n = 9), 25 (n = 6), and 51 (n = 8) weeks following hospital admission. Patients with signs of interstitial lung damage were excluded. At 6 weeks, patients exhibited impaired 129Xe gas transfer (RBC to membrane fraction), but lung microstructure was not increased (apparent diffusion coefficient and mean acinar airway dimensions). Minor ventilation abnormalities present in four patients were largely resolved in the 6- to 25-week period. At 12 weeks, all patients with lung perfusion data (n = 6) showed an increase in both pulmonary blood volume and flow compared with 6 weeks, although this was not statistically significant. At 12 weeks, significant improvements in 129Xe gas transfer were observed compared with 6-week examinations; however, 129Xe gas transfer remained abnormally low at weeks 12, 25, and 51. INTERPRETATION: 129Xe gas transfer was impaired up to 1 year following hospitalization in patients who were hospitalized with COVID-19 pneumonia, without evidence of architectural distortion on structural imaging, whereas lung ventilation was normal at 52 weeks.


Assuntos
COVID-19 , Isótopos de Xenônio , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Idoso , Feminino , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Pulmão/diagnóstico por imagem
6.
Front Cardiovasc Med ; 9: 983859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225963

RESUMO

Introduction: Computed tomography pulmonary angiography (CTPA) is an essential test in the work-up of suspected pulmonary vascular disease including pulmonary hypertension and pulmonary embolism. Cardiac and great vessel assessments on CTPA are based on visual assessment and manual measurements which are known to have poor reproducibility. The primary aim of this study was to develop an automated whole heart segmentation (four chamber and great vessels) model for CTPA. Methods: A nine structure semantic segmentation model of the heart and great vessels was developed using 200 patients (80/20/100 training/validation/internal testing) with testing in 20 external patients. Ground truth segmentations were performed by consultant cardiothoracic radiologists. Failure analysis was conducted in 1,333 patients with mixed pulmonary vascular disease. Segmentation was achieved using deep learning via a convolutional neural network. Volumetric imaging biomarkers were correlated with invasive haemodynamics in the test cohort. Results: Dice similarity coefficients (DSC) for segmented structures were in the range 0.58-0.93 for both the internal and external test cohorts. The left and right ventricle myocardium segmentations had lower DSC of 0.83 and 0.58 respectively while all other structures had DSC >0.89 in the internal test cohort and >0.87 in the external test cohort. Interobserver comparison found that the left and right ventricle myocardium segmentations showed the most variation between observers: mean DSC (range) of 0.795 (0.785-0.801) and 0.520 (0.482-0.542) respectively. Right ventricle myocardial volume had strong correlation with mean pulmonary artery pressure (Spearman's correlation coefficient = 0.7). The volume of segmented cardiac structures by deep learning had higher or equivalent correlation with invasive haemodynamics than by manual segmentations. The model demonstrated good generalisability to different vendors and hospitals with similar performance in the external test cohort. The failure rates in mixed pulmonary vascular disease were low (<3.9%) indicating good generalisability of the model to different diseases. Conclusion: Fully automated segmentation of the four cardiac chambers and great vessels has been achieved in CTPA with high accuracy and low rates of failure. DL volumetric biomarkers can potentially improve CTPA cardiac assessment and invasive haemodynamic prediction.

7.
Br J Radiol ; 95(1137): 20220254, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35816548

RESUMO

OBJECTIVES: To evaluate the change in the number of CT pulmonary angiograms (CTPAs) performed and the change in the yield of acute pulmonary embolism (PE) on CTPA at a busy tertiary teaching hospital from 2016 to 2019. METHODS: All CTPA examinations for both in-patients and emergency department patients performed at our busy tertiary teaching hospital between 1 January 2016 and 31 December 2019 were identified from the radiology information system. A natural language processing technique called phrase matching was employed to assign each of the examination reports a result of either positive, negative or equivocal for acute PE. This algorithm was validated on a sample of 200 reports. RESULTS: The number of CTPAs performed increased 59% from 2016 to 2019. The overall yield of acute PE has remained steady averaging 15.9%, ranging from 15.0% to 17.2%. CONCLUSIONS: Over 3 years, there has been a significant increase in the demand for CTPA examinations. The yield of acute PE has remained steady indicating a justified increase in demand. The yield of acute PE on CTPA within our centre is higher than the Royal College of Radiologists' suggested minimum of 15.4% which suggests the current guidelines used for the investigation of suspected acute PE within our centre are appropriate. ADVANCES IN KNOWLEDGE: The guidelines and subsequent yield of acute PE on CTPA at our tertiary teaching hospital can be used as a reference standard for other similar institutes.


Assuntos
Angiografia , Embolia Pulmonar , Doença Aguda , Angiografia/métodos , Angiografia por Tomografia Computadorizada/métodos , Serviço Hospitalar de Emergência , Humanos , Embolia Pulmonar/diagnóstico por imagem , Estudos Retrospectivos
8.
Front Cardiovasc Med ; 9: 797561, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402574

RESUMO

Background: Current European Society of Cardiology and European Respiratory Society guidelines recommend regular risk stratification with an aim of treating patients with pulmonary arterial hypertension (PAH) to improve or maintain low-risk status (<5% 1-year mortality). Methods: Consecutive patients with PAH who underwent cardiac magnetic resonance imaging (cMRI) were identified from the Assessing the Spectrum of Pulmonary hypertension Identified at a Referral centre (ASPIRE) registry. Kaplan-Meier survival curves, locally weighted scatterplot smoothing regression and multi-variable logistic regression analysis were performed. Results: In 311 consecutive, treatment-naïve patients with PAH undergoing cMRI including 121 undergoing follow-up cMRI, measures of right ventricular (RV) function including right ventricular ejection fraction (RVEF) and RV end systolic volume and right atrial (RA) area had prognostic value. However, only RV metrics were able to identify a low-risk status. Age (p < 0.01) and RVEF (p < 0.01) but not RA area were independent predictors of 1-year mortality. Conclusion: This study highlights the need for guidelines to include measures of RV function rather than RA area alone to aid the risk stratification of patients with PAH.

9.
ERJ Open Res ; 8(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35083317

RESUMO

BACKGROUND: Patients with pulmonary hypertension (PH) and lung disease may pose a diagnostic dilemma between idiopathic pulmonary arterial hypertension (IPAH) and PH associated with lung disease (PH-CLD). The prognostic impact of common computed tomography (CT) parenchymal features is unknown. METHODS: 660 IPAH and PH-CLD patients assessed between 2001 and 2019 were included. Reports for all CT scans 1 year prior to diagnosis were analysed for common lung parenchymal patterns. Cox regression and Kaplan-Meier analysis were performed. RESULTS: At univariate analysis of the whole cohort, centrilobular ground-glass (CGG) changes (hazard ratio, HR 0.29) and ground-glass opacification (HR 0.53) predicted improved survival, while honeycombing (HR 2.79), emphysema (HR 2.09) and fibrosis (HR 2.38) predicted worse survival (all p<0.001). Fibrosis was an independent predictor after adjusting for baseline demographics, PH severity and diffusing capacity of the lung for carbon monoxide (HR 1.37, p<0.05). Patients with a clinical diagnosis of IPAH who had an absence of reported parenchymal lung disease (IPAH-noLD) demonstrated superior survival to patients diagnosed with either IPAH who had coexistent CT lung disease or PH-CLD (2-year survival of 85%, 60% and 46%, respectively, p<0.05). CGG changes were present in 23.3% of IPAH-noLD and 5.8% of PH-CLD patients. There was no significant difference in survival between IPAH-noLD patients with or without CGG changes. PH-CLD patients with fibrosis had worse survival than those with emphysema. INTERPRETATION: Routine clinical reports of CT lung parenchymal disease identify groups of patients with IPAH and PH-CLD with significantly different prognoses. Isolated CGG changes are not uncommon in IPAH but are not associated with worse survival.

10.
Br J Radiol ; 95(1132): 20210207, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34106792

RESUMO

The use of pulmonary MRI in a clinical setting has historically been limited. Whilst CT remains the gold-standard for structural lung imaging in many clinical indications, technical developments in ultrashort and zero echo time MRI techniques are beginning to help realise non-ionising structural imaging in certain lung disorders. In this invited review, we discuss a complementary technique - hyperpolarised (HP) gas MRI with inhaled 3He and 129Xe - a method for functional and microstructural imaging of the lung that has great potential as a clinical tool for early detection and improved understanding of pathophysiology in many lung diseases. HP gas MRI now has the potential to make an impact on clinical management by enabling safe, sensitive monitoring of disease progression and response to therapy. With reference to the significant evidence base gathered over the last two decades, we review HP gas MRI studies in patients with a range of pulmonary disorders, including COPD/emphysema, asthma, cystic fibrosis, and interstitial lung disease. We provide several examples of our experience in Sheffield of using these techniques in a diagnostic clinical setting in challenging adult and paediatric lung diseases.


Assuntos
Asma , Fibrose Cística , Criança , Gases , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino
11.
ERJ Open Res ; 7(3)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34589542

RESUMO

BACKGROUND: Hyperpolarised gas magnetic resonance imaging (MRI) can be used to assess ventilation patterns. Previous studies have shown the image-derived metric of ventilation defect per cent (VDP) to correlate with forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) and FEV1 in asthma. OBJECTIVES: The aim of this study was to explore the utility of hyperpolarised xenon-129 (129Xe) ventilation MRI in clinical care and examine its relationship with spirometry and other clinical metrics in people seen in a severe asthma service. METHODS: 26 people referred from a severe asthma clinic for MRI scanning were assessed by contemporaneous 129Xe MRI and spirometry. A subgroup of 18 patients also underwent reversibility testing with spirometry and MRI. Quantitative MRI measures of ventilation were calculated, VDP and the ventilation heterogeneity index (VHI), and compared to spirometry, Asthma Control Questionnaire 7 (ACQ7) and blood eosinophil count. Images were reviewed by a multidisciplinary team. RESULTS: VDP and VHI correlated with FEV1, FEV1/FVC and forced expiratory flow between 25% and 75% of FVC but not with ACQ7 or blood eosinophil count. Discordance of MRI imaging and symptoms and/or pulmonary function tests also occurred, prompting diagnostic re-evaluation in some cases. CONCLUSION: Hyperpolarised gas MRI provides a complementary method of assessment in people with difficult to manage asthma in a clinical setting. When used as a tool supporting clinical care in a severe asthma service, occurrences of discordance between symptoms, spirometry and MRI scanning indicate how MRI scanning may add to a management pathway.

12.
Int J Cardiovasc Imaging ; 37(10): 3019-3025, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33978936

RESUMO

This study aimed to determine the prognostic value of cardiovascular magnetic resonance (CMR) in patients with heart failure with preserved ejection fraction and associated pulmonary hypertension (pulmonary hypertension-HFpEF). Patients with pulmonary hypertension-HFpEF were recruited from the ASPIRE registry and underwent right heart catheterisation (RHC) and CMR. On RHC, the inclusion criteria was a mean pulmonary artery pressure (MPAP) ≥ 25 mmHg and pulmonary arterial wedge pressure > 15 mmHg and, on CMR, a left atrial volume > 41 ml/m2 with left ventricular ejection fraction > 50%. Cox regression was performed to evaluate CMR against all-cause mortality. In this study, 116 patients with pulmonary hypertension-HFpEF were identified. Over a mean follow-up period of 3 ± 2 years, 61 patients with pulmonary hypertension-HFpEF died (53%). In univariate regression, 11 variables demonstrated association to mortality: indexed right ventricular (RV) volumes and stroke volume, right ventricular ejection fraction (RVEF), indexed RV mass, septal angle, pulmonary artery systolic/diastolic area and its relative area change. In multivariate regression, only three variables were independently associated with mortality: RVEF (HR 0.64, P < 0.001), indexed RV mass (HR 1.46, P < 0.001) and IV septal angle (HR 1.48, P < 0.001). Our CMR model had 0.76 area under the curve (P < 0.001) to predict mortality. This study confirms that pulmonary hypertension in patients with HFpEF is associated with a poor prognosis and we observe that CMR can risk stratify these patients and predict all-cause mortality. When patients with HFpEF develop pulmonary hypertension, CMR measures that reflect right ventricular afterload and function predict all-cause mortality.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Disfunção Ventricular Direita , Insuficiência Cardíaca/diagnóstico por imagem , Humanos , Hipertensão Pulmonar/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Valor Preditivo dos Testes , Prognóstico , Volume Sistólico , Disfunção Ventricular Direita/diagnóstico por imagem , Função Ventricular Esquerda , Função Ventricular Direita
13.
Pulm Circ ; 11(1): 2045894020979198, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33532054

RESUMO

SARS-CoV-2 (COVID-19) is associated with increased thrombosis. Here, we demonstrate patterns of pulmonary vascular disease in COVID-19 including classical acute pulmonary embolism and subsegmental perfusion defects in the absence of acute pulmonary embolism suggestive of microvascular thrombosis.

14.
Artigo em Inglês | MEDLINE | ID: mdl-33320693

RESUMO

Background - Approximately 25% of patients with pulmonary arterial hypertension (PAH) have been found to harbor rare mutations in disease-causing genes. To identify missing heritability in PAH we integrated deep phenotyping with whole-genome sequencing data using Bayesian statistics. Methods - We analyzed 13,037 participants enrolled in the NIHR BioResource - Rare Diseases (NBR) study, of which 1,148 were recruited to the PAH domain. To test for genetic associations between genes and selected phenotypes of pulmonary hypertension (PH), we used the Bayesian rare-variant association method BeviMed. Results - Heterozygous, high impact, likely loss-of-function variants in the Kinase Insert Domain Receptor (KDR) gene were strongly associated with significantly reduced transfer coefficient for carbon monoxide (KCO, posterior probability (PP)=0.989) and older age at diagnosis (PP=0.912). We also provide evidence for familial segregation of a rare nonsense KDR variant with these phenotypes. On computed tomographic imaging of the lungs, a range of parenchymal abnormalities were observed in the five patients harboring these predicted deleterious variants in KDR. Four additional PAH cases with rare likely loss-of-function variants in KDR were independently identified in the US PAH Biobank cohort with similar phenotypic characteristics. Conclusions - The Bayesian inference approach allowed us to independently validate KDR, which encodes for the Vascular Endothelial Growth Factor Receptor 2 (VEGFR2), as a novel PAH candidate gene. Furthermore, this approach specifically associated high impact likely loss-of-function variants in the genetically constrained gene with distinct phenotypes. These findings provide evidence for KDR being a clinically actionable PAH gene and further support the central role of the vascular endothelium in the pathobiology of PAH.

16.
Eur Radiol ; 30(9): 4918-4929, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32342182

RESUMO

OBJECTIVES: Computed tomography (CT) pulmonary angiography is widely used in patients with suspected pulmonary hypertension (PH). However, the diagnostic and prognostic significance remains unclear. The aim of this study was to (a) build a diagnostic CT model and (b) test its prognostic significance. METHODS: Consecutive patients with suspected PH undergoing routine CT pulmonary angiography and right heart catheterisation (RHC) were identified. Axial and reconstructed images were used to derive CT metrics. Multivariate regression analysis was performed in the derivation cohort to identify a diagnostic CT model to predict mPAP ≥ 25 mmHg (the existing ESC guideline definition of PH) and > 20 mmHg (the new threshold proposed at the 6th World Symposium on PH). In the validation cohort, sensitivity, specificity and compromise CT thresholds were identified with receiver operating characteristic (ROC) analysis. The prognostic value of the CT model was assessed using Kaplan-Meier analysis. RESULTS: Between 2012 and 2016, 491 patients were identified. In the derivation cohort (n = 247), a CT model was identified including pulmonary artery diameter, right ventricular outflow tract thickness, septal angle and left ventricular area. In the validation cohort (n = 244), the model was diagnostic, with an area under the ROC curve of 0.94/0.91 for mPAP ≥ 25/> 20 mmHg respectively. In the validation cohort, 93 patients died; mean follow-up was 42 months. The diagnostic thresholds for the CT model were prognostic, log rank, all p < 0.01. DISCUSSION: In suspected PH, a diagnostic CT model had diagnostic and prognostic utility. KEY POINTS: • Diagnostic CT models have high diagnostic accuracy in a tertiary referral population of with suspected PH. • Diagnostic CT models stratify patients by mortality in suspected PH.


Assuntos
Angiografia por Tomografia Computadorizada/métodos , Hipertensão Pulmonar/diagnóstico , Artéria Pulmonar/diagnóstico por imagem , Pressão Propulsora Pulmonar/fisiologia , Idoso , Cateterismo Cardíaco/métodos , Feminino , Humanos , Hipertensão Pulmonar/fisiopatologia , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Artéria Pulmonar/fisiopatologia , Curva ROC
17.
Respirology ; 25(10): 1066-1072, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32249494

RESUMO

BACKGROUND AND OBJECTIVE: There are limited data regarding patients with PAPVD with suspected and diagnosed PH. METHODS: Patients with PAPVD presenting to a large PH referral centre during 2007-2017 were identified from the ASPIRE registry. RESULTS: Ninety patients with PAPVD were identified; this was newly diagnosed at our unit in 71 patients (78%), despite 69% of these having previously undergone CT. Sixty-seven percent had a single right superior and 23% a single left superior anomalous vein. Patients with an SV-ASD had a significantly larger RV area, pulmonary artery and L-R shunt and a higher % predicted DLCO (all P < 0.05). Sixty-five patients were diagnosed with PH (defined as mPAP ≥ 25 mm Hg), which was post-capillary in 24 (37%). No additional causes of PH were identified in 28 patients; 17 of these (26% of those patients with PH) had a PVR > 3 WU. Seven of these patients had isolated PAPVD, five of whom (8% of those patients with PH) had anomalous drainage of a single pulmonary vein. CONCLUSION: Undiagnosed PAPVD with or without ASD may be present in patients with suspected PH; cross-sectional imaging should therefore be specifically assessed whenever this diagnosis is considered. Radiological and physiological markers of L-R shunt are higher in patients with an associated SV-ASD. Although many patients with PAPVD and PH may have other potential causes of PH, a proportion of patients diagnosed with PAH have isolated PAPVD in the absence of other causative conditions.


Assuntos
Hipertensão Pulmonar/complicações , Veias Pulmonares/anormalidades , Sistema de Registros , Comorbidade , Feminino , Seguimentos , Hemodinâmica , Humanos , Hipertensão Pulmonar/fisiopatologia , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Veias Pulmonares/fisiopatologia , Resultado do Tratamento
18.
Eur Respir J ; 55(6)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32108045

RESUMO

There are limited published data defining survival and treatment response in patients with mild lung disease and/or reduced gas transfer who fulfil diagnostic criteria for idiopathic pulmonary arterial hypertension (IPAH).Patients diagnosed with IPAH between 2001 and 2019 were identified in the ASPIRE (Assessing the Spectrum of Pulmonary Hypertension Identified at a Referral Centre) registry. Using prespecified criteria based on computed tomography (CT) imaging and spirometry, patients with a diagnosis of IPAH and no lung disease were termed IPAHno-LD (n=303), and those with minor/mild emphysema or fibrosis were described as IPAHmild-LD (n=190).Survival was significantly better in IPAHno-LD than in IPAHmild-LD (1- and 5-year survival 95% and 70% versus 78% and 22%, respectively; p<0.0001). In the combined group of IPAHno-LD and IPAHmild-LD, independent predictors of higher mortality were increasing age, lower diffusing capacity of the lung for carbon monoxide (D LCO), lower exercise capacity and a diagnosis of IPAHmild-LD (all p<0.05). Exercise capacity and quality of life improved (both p<0.0001) following treatment in patients with IPAHno-LD, but not IPAHmild-LD A proportion of patients with IPAHno-LD had a D LCO <45%; these patients had poorer survival than patients with D LCO ≥45%, although they demonstrated improved exercise capacity following treatment.The presence of even mild parenchymal lung disease in patients who would be classified as IPAH according to current recommendations has a significant adverse effect on outcomes. This phenotype can be identified using lung function testing and clinical CT reports. Patients with IPAH, no lung disease and severely reduced D LCO may represent a further distinct phenotype. These data suggest that randomised controlled trials of targeted therapies in patients with these phenotypes are required.


Assuntos
Hipertensão Pulmonar , Pneumopatias , Hipertensão Pulmonar Primária Familiar , Humanos , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/terapia , Pulmão/diagnóstico por imagem , Qualidade de Vida
19.
Biomed Res Int ; 2019: 6074984, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001557

RESUMO

BACKGROUND: Four-dimensional flow cardiovascular magnetic resonance (4D flow CMR) is a noninvasive novel imaging technology that can be used to visualise and assess right ventricular function. The aim of this systematic review is to summarise the literature available on 4D flow CMR methods used to determine right ventricular diastolic function. METHODS: A systematic review of current literature was carried out to ascertain what is known about right ventricular assessment by quantification of 4D flow CMR. Structured searches were carried out on Medline and EMBASE in December 2018. PG and NB screened the titles and abstracts for relevance. RESULTS: Of the 20 articles screened, 5 studies met eligibility for systematic review. After a further search on pubmed 1 more relevant article was found and added to the review. CONCLUSIONS: These proposed methods using 4D flow CMR can quantify right ventricular diastolic assessment. The evidence gathered is mainly observational, featuring single-centred studies. Larger, multicentre studies are required to validate the proposed techniques, evaluate reproducibility, and investigate the clinical applicability that 4D flow CMR offers compared to standard practices. PROSPERO registration number is CRD42019121492.


Assuntos
Diástole , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Imagem Cinética por Ressonância Magnética , Função Ventricular Direita , Feminino , Humanos , Masculino
20.
Radiology ; 290(1): 61-68, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30351254

RESUMO

Purpose To derive and test multiparametric cardiac MRI models for the diagnosis of pulmonary hypertension (PH). Materials and Methods Images and patient data from consecutive patients suspected of having PH who underwent cardiac MRI and right-sided heart catheterization (RHC) between 2012 and 2016 were retrospectively reviewed. Of 2437 MR images identified, 603 fit the inclusion criteria. The mean patient age was 61 years (range, 18-88 years; mean age of women, 60 years [range, 18-84 years]; mean age of men, 62 years [range, 22-88 years]). In the first 300 patients (derivation cohort), cardiac MRI metrics that showed correlation with mean pulmonary arterial pressure (mPAP) were used to create a regression algorithm. The performance of the model was assessed in the 303-patient validation cohort by using receiver operating characteristic (ROC) and χ2 analysis. Results In the derivation cohort, cardiac MRI mPAP model 1 (right ventricle and black blood) was defined as follows: -179 + loge interventricular septal angle × 42.7 + log10 ventricular mass index (right ventricular mass/left ventricular mass) × 7.57 + black blood slow flow score × 3.39. In the validation cohort, cardiac MRI mPAP model 1 had strong agreement with RHC-measured mPAP, an intraclass coefficient of 0.78, and high diagnostic accuracy (area under the ROC curve = 0.95; 95% confidence interval [CI]: 0.93, 0.98). The threshold of at least 25 mm Hg had a sensitivity of 93% (95% CI: 89%, 96%), specificity of 79% (95% CI: 65%, 89%), positive predictive value of 96% (95% CI: 93%, 98%), and negative predictive value of 67% (95% CI: 53%, 78%) in the validation cohort. A second model, cardiac MRI mPAP model 2 (right ventricle pulmonary artery), which excludes the black blood flow score, had equivalent diagnostic accuracy (ROC difference: P = .24). Conclusion Multiparametric cardiac MRI models have high diagnostic accuracy in patients suspected of having pulmonary hypertension. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Colletti in this issue.


Assuntos
Hipertensão Pulmonar/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Análise de Regressão , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Cateterismo Cardíaco , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Artéria Pulmonar/diagnóstico por imagem , Curva ROC , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...