Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Gene ; : 148608, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823655

RESUMO

During the COVID-19 pandemic, the SARS-CoV-2 gene mutation has been rapidly emerging and spreading all over the world. Experts worldwide regularly monitor genetic mutations and variants through genome-sequence-based surveillance, laboratory testing, outbreak investigation, and epidemiological probing. Clinical pathologists and medical laboratory scientists prefer developing or endorsing COVID-19 vaccines with a broader immune response involving various antibodies and cells to protect against mutations or new variants. Randomness plays an enormous role in pathology and epidemiology. Hence, based on epidemiological parameter data, we construct and probe a stochastically perturbed dominant variant of the coronavirus epidemic model with three nonlinear saturated incidence rates. We reveal the existence of a unique global positive solution to the constructed stochastic COVID-19 model. The Lyapunov function method is used to determine the presence of a stationary distribution of positive solutions. We derive sufficient conditions for the coronavirus to be eradicated. Eventually, numerical simulations validate the effectiveness of our theoretical outcomes.

2.
Int J Dyn Control ; 11(1): 122-135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35756149

RESUMO

Several studies have previously been conducted on the dynamics of probabilistic epidemic models driven by Lévy disorder. All of these works have used the Poisson counting process with finite Lévy measures. However, this scope disregards a considerable category of correlated Lévy jump processes governed by an infinite Lévy measure. In this research, we take into consideration this general framework applied to an epidemic model with a quarantine strategy. Under an appropriate hypothetical setting, we infer the exact threshold value between the ergodicity and the disease disappearance. Our analysis completes the work presented by Privault and Wang (J Nonlinear Sci 31(1):1-28, 2021) and puts forward a novel analytical aspect to deal with other stochastic models in several areas. As a numerical application, we implement the algorithm of Rosinski (Stoch Process Appl 117:677-707, 2007) for tempered stable Lévy processes with an infinite Lévy measure.

3.
Acta Math Sci ; 42(5): 2087-2112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911571

RESUMO

The hepatitis C virus is hitherto a tremendous threat to human beings, but many researchers have analyzed mathematical models for hepatitis C virus transmission dynamics only in the deterministic case. Stochasticity plays an immense role in pathology and epidemiology. Hence, the main theme of this article is to investigate a stochastic epidemic hepatitis C virus model with five states of epidemiological classification: susceptible, acutely infected, chronically infected, recovered or removed and chronically infected, and treated. The stochastic hepatitis C virus model in epidemiology is established based on the environmental influence on individuals, is manifested by stochastic perturbations, and is proportional to each state. We assert that the stochastic HCV model has a unique global positive solution and attains sufficient conditions for the extinction of the hepatotropic RNA virus. Furthermore, by constructing a suitable Lyapunov function, we obtain sufficient conditions for the existence of an ergodic stationary distribution of the solutions to the stochastic HCV model. Moreover, this article confirms that using numerical simulations, the six parameters of the stochastic HCV model can have a high impact over the disease transmission dynamics, specifically the disease transmission rate, the rate of chronically infected population, the rate of progression to chronic infection, the treatment failure rate of chronically infected population, the recovery rate from chronic infection and the treatment rate of the chronically infected population. Eventually, numerical simulations validate the effectiveness of our theoretical conclusions.

4.
Chaos Solitons Fractals ; 159: 112110, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35502416

RESUMO

This study concentrates on the analysis of a stochastic SIC epidemic system with an enhanced and general perturbation. Given the intricacy of some impulses caused by external disturbances, we integrate the quadratic Lévy noise into our model. We assort the long-run behavior of a perturbed SIC epidemic model presented in the form of a system of stochastic differential equations driven by second-order jumps. By ameliorating the hypotheses and using some new analytical techniques, we find the exact threshold value between extinction and ergodicity (persistence) of our system. The idea and analysis used in this paper generalize the work of N. T. Dieu et al. (2020), and offer an innovative approach to dealing with other random population models. Comparing our results with those of previous studies reveals that quadratic jump-diffusion has no impact on the threshold value, but it remarkably influences the dynamics of the infection and may worsen the pandemic situation. In order to illustrate this comparison and confirm our analysis, we perform numerical simulations with some real data of COVID-19 in Morocco. Furthermore, we arrive at the following results: (i) the time average of the different classes depends on the intensity of the noise (ii) the quadratic noise has a negative effect on disease duration (iii) the stationary density function of the population abruptly changes its shape at some values of the noise intensity. Mathematics Subject Classification 2020: 34A26; 34A12; 92D30; 37C10; 60H30; 60H10.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...