Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(20): e202400843, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38517330

RESUMO

Recent work has demonstrated that temporary crosslinks in polymer networks generated by chemical "fuels" afford materials with large, transient changes in their mechanical properties. This can be accomplished in carboxylic-acid-functionalized polymer hydrogels using carbodiimides, which generate anhydride crosslinks with lifetimes on the order of minutes to hours. Here, the impact of the polymer network architecture on the mechanical properties of transiently crosslinked materials was explored. Single networks (SNs) were compared to interpenetrated networks (IPNs). Notably, semi-IPN precursors that give IPNs on treatment with carbodiimide give much higher fracture energies (i.e., resistance to fracture) and superior resistance to compressive strain compared to other network architectures. A precursor semi-IPN material featuring acrylic acid in only the free polymer chains yields, on treatment with carbodiimide, an IPN with a fracture energy of 2400 J/m2, a fourfold increase compared to an analogous semi-IPN precursor that yields a SN. This resistance to fracture enables the formation of macroscopic complex cut patterns, even at high strain, underscoring the pivotal role of polymer architecture in mechanical performance.

2.
J Am Chem Soc ; 145(9): 5553-5560, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36848549

RESUMO

Carbodiimide-fueled anhydride bond formation has been used to enhance the mechanical properties of permanently crosslinked polymer networks, giving materials that exhibit transitions from soft gels to covalently reinforced gels, eventually returning to the original soft gels. Temporary changes in mechanical properties result from a transient network of anhydride crosslinks, which eventually dissipate by hydrolysis. Over an order of magnitude increase in the storage modulus is possible through carbodiimide fueling. The time-dependent mechanical properties can be modulated by the concentration of carbodiimide, temperature, and primary chain architecture. Because the materials remain rheological solids, new material functions such as temporally controlled adhesion and rewritable spatial patterns of mechanical properties have been realized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...