Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
Paediatr Anaesth ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775778

RESUMO

BACKGROUND: Unintended postoperative hypothermia in infants is associated with increased mortality and morbidity. We noted consistent hypothermia postoperatively in more than 60% of our neonatal intensive care (NICU) babies. Therefore, we set out to determine whether a targeted quality improvement (QI) project could decrease postoperative hypothermia rates in infants. OBJECTIVES: Our SMART aim was to reduce postoperative hypothermia (<36.5°C) in infants from 60% to 40% within 6 months. METHODS: This project was approved by IRB at Guangzhou Women and Children's Medical Center, China. The QI team included multidisciplinary healthcare providers in China and QI experts from Children's Hospital of Philadelphia, USA. The plan-do-study-act (PDSA) cycles included establishing a perioperative-thermoregulation protocol, optimizing the transfer process, and staff education. The primary outcome and balancing measures were, respectively, postoperative hypothermia and hyperthermia (axillary temperature < 36.5°C, >37.5°C). Data collected was analyzed using control charts. The factors associated with a reduction in hypothermia were explored using regression analysis. RESULTS: There were 295 infants in the project. The percentage of postoperative hypothermia decreased from 60% to 37% over 26 weeks, a special cause variation below the mean on the statistical process control chart. Reduction in hypothermia was associated with an odds of 0.17 (95% CI: 0.06-0.46; p <.001) for compliance with the transport incubator and 0.24 (95% CI: 0.1-0.58; p =.002) for prewarming the OR ambient temperature to 26°C. Two infants had hyperthermia. CONCLUSIONS: Our QI project reduced postoperative hypothermia without incurring hyperthermia through multidisciplinary team collaboration with the guidance of QI experts from the USA.

2.
Paediatr Anaesth ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808685

RESUMO

Patient safety is the most important aspect of anesthetic care. For both healthcare professionals and patients, the ideal would be no significant morbidity or mortality under anesthesia. Lessons from harm during healthcare can be shared to reduce harm and to increase safety. Many nations and individual institutions have developed robust safety systems to improve the quality and safety of patient care. Large registries that collect rare events, analyze them, and share findings have been developed. The approach, the funding, the included population, support from institutions and government and the methods of each vary. Wake Up Safe (WUS) is a patient safety organization accredited by Agency for Healthcare Research and Quality. Wake Up Safe was established in the United States in 2008 by the Society for Pediatric Anesthesia. The initiative aims to gather data on adverse events, analyze these incidents to gain insights, and apply this knowledge to ultimately reduce their occurrence. The purpose of this review is to describe the patient safety approaches in the USA. Through a national patient safety database WUS. Similar approaches either through WUS international or independent safety approaches have been described in Australia-New Zealand, India, and Singapore. We examine the patient safety processes across the four countries, evaluating their incident review process and the distribution of acquired knowledge. Our focus is on assessing the potential benefits of a WUS collaboration, identifying existing barriers, and determining how such a collaboration would integrate with current incident review databases or systems.

3.
Cell Death Dis ; 15(5): 322, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719798

RESUMO

Metastatic dissemination from the primary tumor is a complex process that requires crosstalk between tumor cells and the surrounding milieu and involves the interplay between numerous cellular-signaling programs. Epithelial-mesenchymal transition (EMT) remains at the forefront of orchestrating a shift in numerous cellular programs, such as stemness, drug resistance, and apoptosis that allow for successful metastasis. Till date, there is limited success in therapeutically targeting EMT. Utilizing a high throughput screen of FDA-approved compounds, we uncovered a novel role of the topoisomerase inhibitor, Teniposide, in reversing EMT. Here, we demonstrate Teniposide as a potent modulator of the EMT program, specifically through an IRF7-NMI mediated response. Furthermore, Teniposide significantly reduces the expression of the key EMT transcriptional regulator, Zinc Finger E-Box Binding Homeobox 2 (ZEB2). ZEB2 downregulation by Teniposide inhibited RNA polymerase I (Pol I) activity and rRNA biogenesis. Importantly, Teniposide treatment markedly reduced pulmonary colonization of breast cancer cells. We have uncovered a novel role of Teniposide, which when used at a very low concentration, mitigates mesenchymal-like invasive phenotype. Overall, its ability to target EMT and rRNA biogenesis makes Teniposide a viable candidate to be repurposed as a therapeutic option to restrict breast cancer metastases.


Assuntos
Neoplasias da Mama , Regulação para Baixo , Transição Epitelial-Mesenquimal , RNA Polimerase I , Teniposídeo , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , RNA Polimerase I/metabolismo , Teniposídeo/farmacologia , Animais , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
5.
Org Biomol Chem ; 22(16): 3273-3278, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38572769

RESUMO

Arylsulfonyl group-bearing α,ß-unsaturated enol esters were readily assembled via the Cs2CO3-mediated union of 2-bromoallyl sulfones and cinnamic acids. The overall transformation is equivalent to an sp2 carbon-oxygen coupling reaction, and therefore constitutes a formal vinylic substitution. Several of the products display promising levels of antiproliferative activities higher than that of the anticancer drug carboplatin. Thiophenol reacted with 2-bromoallyl sulfones under identical conditions to afford α-thiophenyl-α'-tosyl acetone via an apparent aerial oxidation.


Assuntos
Antineoplásicos , Proliferação de Células , Ésteres , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Ésteres/química , Ésteres/farmacologia , Ésteres/síntese química , Humanos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Sulfonas/química , Sulfonas/farmacologia , Sulfonas/síntese química , Relação Estrutura-Atividade , Compostos de Vinila/química , Compostos de Vinila/farmacologia , Compostos de Vinila/síntese química
6.
Nat Commun ; 15(1): 2757, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553488

RESUMO

Solubility of redox-active molecules is an important determining factor of the energy density in redox flow batteries. However, the advancement of electrolyte materials discovery has been constrained by the absence of extensive experimental solubility datasets, which are crucial for leveraging data-driven methodologies. In this study, we design and investigate a highly automated workflow that synergizes a high-throughput experimentation platform with a state-of-the-art active learning algorithm to significantly enhance the solubility of redox-active molecules in organic solvents. Our platform identifies multiple solvents that achieve a remarkable solubility threshold exceeding 6.20 M for the archetype redox-active molecule, 2,1,3-benzothiadiazole, from a comprehensive library of more than 2000 potential solvents. Significantly, our integrated strategy necessitates solubility assessments for fewer than 10% of these candidates, underscoring the efficiency of our approach. Our results also show that binary solvent mixtures, particularly those incorporating 1,4-dioxane, are instrumental in boosting the solubility of 2,1,3-benzothiadiazole. Beyond designing an efficient workflow for developing high-performance redox flow batteries, our machine learning-guided high-throughput robotic platform presents a robust and general approach for expedited discovery of functional materials.

7.
Paediatr Anaesth ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462924

RESUMO

BACKGROUND: In the last 30 years, significant advances have been made in pediatric medical care globally. However, there is a persistent urban-rural gap which is more pronounced in low middle-income countries than high-income countries, similar urban-rural gap exists in India. While on one hand, health care is on par or better than healthier nations thriving international medical tourism industry, some rural parts have reduced access to high-quality care. AIM: With this background, we aim to provide an overview of the present and future of healthcare in India. METHODOLOGY: With the cumulative health experience of the authors or more than 100 years, we have provided our experience and expertise about healthcare in India in this narrative educational review. This is supplemented by the government plans and non government plans as appropriate. References are used to justify as applicable. RESULTS: With the high percentage of pediatric population like other low to middle-income countries, India faces challenges in pediatric surgery and anesthesia due to limited resources and paucity of specialized training, especially in rural areas. Data on the access and quality of care is scarce, and the vast rural population and uneven resource distribution add to the challenges along with the shortage of pediatric surgeons in these areas of specialized care . Addressing these challenges requires a multi faceted strategy that targets both immediate and long-term healthcare needs, focusing on improving the facilities and training healthcare professionals. Solutions could include compulsory rural service, district residency programs, increasing postgraduate or residency positions, and safety courses offered by national and international organizations like Safer Anesthesia from Education Pediatrics, Vital Anesthesia Simulation Training, and World Federation of Society of Anesthesiologists pediatric fellowships. CONCLUSION: India has achieved great strides in perioperative health care and safety. It has become the major international medical industry due to high-quality care, access and costs. Crucially, India needs to establish local hubs for pediatric perioperative care training to enhance healthcare delivery for children.

8.
J Chem Inf Model ; 64(4): 1277-1289, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38359461

RESUMO

Predicting the synthesizability of a new molecule remains an unsolved challenge that chemists have long tackled with heuristic approaches. Here, we report a new method for predicting synthesizability using a simple yet accurate thermochemical descriptor. We introduce Emin, the energy difference between a molecule and its lowest energy constitutional isomer, as a synthesizability predictor that is accurate, physically meaningful, and first-principles based. We apply Emin to 134,000 molecules in the QM9 data set and find that Emin is accurate when used alone and reduces incorrect predictions of "synthesizable" by up to 52% when used to augment commonly used prediction methods. Our work illustrates how first-principles thermochemistry and heuristic approximations for molecular stability are complementary, opening a new direction for synthesizability prediction methods.


Assuntos
Heurística , Isomerismo
9.
Paediatr Anaesth ; 34(2): 160-166, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37962837

RESUMO

BACKGROUND: Propofol-based total intravenous anesthesia is gaining popularity in pediatric anesthesia. Electroencephalogram can be used to guide propofol dosing to the individual patient to mitigate against overdosing and adverse events. However, electroencephalogram interpretation and propofol pharmacokinetics are not sufficiently taught in training programs to confidently deploy electroencephalogram-guided total intravenous anesthesia. AIMS: We conducted a quality improvement project with the smart aim of increasing the percentage of electroencephalogram-guided total intravenous anesthesia cases in our main operating room from 0% to 80% over 18 months. Balancing measures were number of total intravenous anesthesia cases, emergence times, and perioperative emergency activations. METHODS: The project key drivers were education, equipment, and electronic health record modifications. Plan-Do-Study-Act cycles included: (1) providing journal articles, didactic lectures, intraoperative training, and teaching documents; (2) scheduling electroencephalogram-guided total intravenous anesthesia teachers to train faculty, staff, and fellows for specific cases and to assess case-based knowledge; (3) adding age-based propofol dosing tables and electroencephalogram parameters to the electronic health record (EPIC co, Verona, WI); (4) procuring electroencephalogram monitors (Sedline, Masimo Inc). Electroencephalogram-guided total intravenous anesthesia cases and balancing measures were identified from the electronic health record. The smart aim was evaluated by statistical process control chart. RESULTS: After the four Plan-Do-Study-Act cycles, electroencephalogram-guided total intravenous anesthesia increased from 5% to 75% and was sustained at 72% 9 months after project completion. Total intravenous anesthesia cases/mo and number of perioperative emergency activations did not change significantly from start to end of the project, while emergence time for electroencephalogram-guided total intravenous anesthesia was greater statistically but not clinically (total intravenous anesthesia without electroencephalogram [16 ± 10 min], total intravenous anesthesia with electroencephalogram [18 ± 9 min], sevoflurane [17 ± 9 min] p < .001). CONCLUSION: Quality improvement methods may be deployed to adopt electroencephalogram-guided total intravenous anesthesia in a large academic pediatric anesthesia practice. Keys to success include education, in operating room case training, scheduling teachers with learners, electronic health record modifications, and electroencephalogram devices and supplies.


Assuntos
Propofol , Criança , Humanos , Anestésicos Intravenosos , Hospitais Pediátricos , Melhoria de Qualidade , Anestesia Geral/métodos , Eletroencefalografia , Anestesia Intravenosa/métodos
10.
ACS Appl Mater Interfaces ; 16(1): 435-443, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147639

RESUMO

Discovery of stable and efficient electrolytes that are compatible with magnesium metal anodes and high-voltage cathodes is crucial to enabling energy storage technologies that can move beyond existing Li-ion systems. Many promising electrolytes for magnesium anodes have been proposed with chloride-based systems at the forefront; however, Cl-containing electrolytes lack the oxidative stability required by high-voltage cathodes. In this work, we report magnesium trifluoromethanesulfonate (triflate) as a viable coanion for Cl-free, mixed-anion magnesium electrolytes. The addition of triflate to electrolytes containing bis(trifluoromethane sulfonyl) imide (TFSI-) anions yields significantly improved Coulombic efficiency, up to a 100 mV decrease in the plating/stripping overpotential, improved tolerance to trace H2O, and improved oxidative stability (0.35 V improvement compared to that of hybrid TFSI-Cl electrolytes). Based on 19F nuclear magnetic resonance and Raman spectroscopy measurements, we propose that these improvements in performance are driven by the formation of mixed-anion contact ion pairs, where both triflate and TFSI- are coordinated to Mg2+ in the electrolyte bulk. The formation of this mixed-anion magnesium complex is further predicted by the density functional theory to be thermodynamically driven. Collectively, this work outlines the guiding principles for the improved design of next-generation electrolytes for magnesium batteries.

11.
ACS Appl Mater Interfaces ; 15(50): 58309-58319, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38071647

RESUMO

Organic nonaqueous redox flow batteries (O-NRFBs) are promising energy storage devices due to their scalability and reliance on sourceable materials. However, finding suitable redox-active organic molecules (redoxmers) for these batteries remains a challenge. Using plant-based compounds as precursors for these redoxmers can decrease their costs and environmental toxicity. In this computational study, flavonoid molecules have been examined as potential redoxmers for O-NRFBs. Flavone and isoflavone derivatives were selected as catholyte (positive charge carrier) and anolyte (negative charge carrier) molecules, respectively. To drive their redox potentials to the opposite extremes, in silico derivatization was performed using a novel algorithm to generate a library of > 40000 candidate molecules that penalizes overly complex structures. A multiobjective Bayesian optimization based active learning algorithm was then used to identify best redoxmer candidates in these search spaces. Our study provides methodologies for molecular design and optimization of natural scaffolds and highlights the need of incorporating expert chemistry awareness of the natural products and the basic rules of synthetic chemistry in machine learning.

12.
J Vis ; 23(11): 37, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37733541

RESUMO

This pilot study explored the sensitivity of retinal markers to CNS sequelae of concussive and subconcussive head hits. Three groups of college athletes were assessed at pre-season, post-season and 4-months later: Football players with a concussion history (FB+C) (n = 9), players without a concussion history (FB-C) (n = 11), and non-contact athletes (swimmers, track & field; Non-FB) (n = 12). Measures included optical coherence tomography (OCT), OCT angiography, electroretinography, and visual acuity testing. Head impacts during the season were tracked with in-helmet accelerometers. At pre-season, FB+C demonstrated thicker macular central subfields (CSF) (Hedge's g (effect size) = 1.05, p = 0.02) and retinal nerve fiber layers (RNFL) (g = 0.81, p = 0.08), relative to other athletes. Differences in CSF thickness were also observed at post-season and follow-up (gs > 1.00, ps < 0.04), reflecting their non-short-term nature. RNFL was thicker in FB+C at post-season (g = 0.93, p = 0.06) but not later. Total head impacts during the season correlated with increases in CSF thickness from baseline to follow-up only (r = -0.53, p = 0.02). High intensity head impacts in particular correlated with increases in cup-to-disc ratio at post-season and follow-up (rs > 0.53, ps < 0.03). These data suggest that concussion history is associated with retinal changes that are not short-term, and that severe head impacts are associated with acute changes whose duration is not yet known.


Assuntos
Futebol Americano , Humanos , Eletrorretinografia , Projetos Piloto , Retina/diagnóstico por imagem , Estações do Ano
13.
Saudi Pharm J ; 31(9): 101708, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37564748

RESUMO

Aegle marmelos (L.) Correa is an Indian medicinal plant known for its vast therapeutic activities. In Ayurveda, the plant is known to balance "vata," "pitta," and "kapha" dosh. Recent studies suggest anti-inflammatory, anti-microbial, and anti-diabetic potential but lack in defining the dosage over the therapeutic activities. This study aims to determine the chemical profile of Aegle marmelos fruit extract; identification, enrichment, and characterization of the principal active component(s) having anti-inflammatory and anti-diabetic potential. Targeted enrichment of total coumarins, focusing on marmelosin, marmesin, aegeline, psoralen, scopoletin, and umbelliferone, was done from Aegle marmelos fruit pulp, and characterized using advanced high-throughput techniques. In vitro and in silico anti-diabetic and anti-inflammatory activities were assessed to confirm their efficacy and affinity as anti-diabetic and anti-inflammatory agents. The target compounds were also analysed for toxicity by in silico ADMET study and in vitro MTT assay on THP-1 and A549 cell lines. The coumarins enrichment process designed, was found specific for coumarins isolation as it resulted into 48.61% of total coumarins enrichment, which includes 31.2% marmelosin, 8.9% marmesin, 4% psoralen, 2% scopoletin, 1.7% umbelliferone, and 0.72% aegeline. The quantification with HPTLC and qNMR was found to be correlated with the HPLC assay results. The present study validates the potential use of Aegle marmelos as an anti-inflammatory and anti-diabetic agent. Coumarins enriched from the plant fruit have good therapeutic activity and can be used for Phytopharmaceutical ingredient development. The study is novel, in which coumarins were enriched and characterized by a simple and sophisticated methodology.

15.
J Phys Chem A ; 127(28): 5914-5920, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37406209

RESUMO

In previous work (Dandu et al., J. Phys. Chem. A, 2022, 126, 4528-4536), we were successful in predicting accurate atomization energies of organic molecules using machine learning (ML) models, obtaining an accuracy as low as 0.1 kcal/mol compared to the G4MP2 method. In this work, we extend the use of these ML models to adiabatic ionization potentials on data sets of energies generated using quantum chemical calculations. Atomic specific corrections that were found to improve atomization energies from quantum chemical calculations have also been used in this study to improve ionization potentials. The quantum chemical calculations were performed on 3405 molecules containing eight or fewer non-hydrogen atoms derived from the QM9 data set, using the B3LYP functional with the 6-31G(2df,p) basis set for optimization. Low-fidelity IPs for these structures were obtained using two density functional methods: B3LYP/6-31+G(2df,p) and ωB97XD/6-311+G(3df,2p). Highly accurate G4MP2 calculations were performed on these optimized structures to obtain high-fidelity IPs to use in ML models based on the low-fidelity IPs. Our best performing ML methods gave IPs of organic molecules within a mean absolute deviation of 0.035 eV from the G4MP2 IPs for the whole data set. This work demonstrates that ML predictions assisted by quantum chemical calculations can be used to successfully predict IPs of organic molecules for use in high throughput screening.

16.
NPJ Precis Oncol ; 7(1): 61, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380890

RESUMO

Hyperactivated ribosome biosynthesis is attributed to a need for elevated protein synthesis that accommodates cell growth and division, and is characterized by nucleomorphometric alterations and increased nucleolar counts. Ribosome biogenesis is challenged when DNA-damaging treatments such as radiotherapy are utilized. Tumor cells that survive radiotherapy form the basis of recurrence, tumor progression, and metastasis. In order to survive and become metabolically revitalized, tumor cells need to reactivate RNA Polymerase I (RNA Pol I) to synthesize ribosomal RNA, an integral component of ribosomes. In this study, we showed that following radiation therapy, tumor cells from breast cancer patients demonstrate activation of a ribosome biosynthesis signature concurrent with enrichment of a signature of Hedgehog (Hh) activity. We hypothesized that GLI1 activates RNA Pol I in response to irradiation and licenses the emergence of a radioresistant tumor population. Our work establishes a novel role for GLI1 in orchestrating RNA Pol I activity in irradiated breast cancer cells. Furthermore, we present evidence that in these irradiated tumor cells, Treacle ribosome biogenesis factor 1 (TCOF1), a nucleolar protein that is important in ribosome biogenesis, facilitates nucleolar translocation of GLI1. Inhibiting Hh activity and RNA Pol I activity disabled the outgrowth of breast cancer cells in the lungs. As such, ribosome biosynthesis and Hh activity present as actionable signaling mechanisms to enhance the effectiveness of radiotherapy.

17.
Paediatr Anaesth ; 33(9): 728-735, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37203788

RESUMO

BACKGROUND: Inhalational anesthetic agents are potent greenhouse gases with global warming potential that far exceed that of carbon dioxide. Traditionally, pediatric inhalation inductions are achieved with a volatile anesthetic delivered to the patient in oxygen and nitrous oxide at high fresh gas flows. While contemporary volatile anesthetics and anesthesia machines allow for a more environmentally conscious induction, practice has not changed. We aimed to reduce the environmental impact of our inhalation inductions by decreasing the use of nitrous oxide and fresh gas flows. METHODS: Through a series of four plan-do-study-act cycles, the improvement team used content experts to demonstrate the environmental impact of the current inductions and to provide practical ways to reduce this, by focusing on nitrous oxide use and fresh gas flows, with visual reminders introduced at point of delivery. The primary measures were the percentage of inhalation inductions that used nitrous oxide and the maximum fresh gas flows/kg during the induction period. Statistical process control charts were used to measure improvement over time. RESULTS: 33 285 inhalation inductions were included over a 20-month period. nitrous oxide use decreased from 80% to <20% and maximum fresh gas flows/kg decreased from a rate of 0.53 L/min/kg to 0.38 L/min/kg, an overall reduction of 28%. Reduction in fresh gas flows was greatest in the lightest weight groups. Induction times and behaviors remained unchanged over the duration of this project. CONCLUSIONS: Our quality improvement group decreased the environmental impact of inhalation inductions and created cultural change within our department to sustain change and foster the pursuit of future environmental efforts.


Assuntos
Anestésicos Inalatórios , Éteres Metílicos , Criança , Humanos , Óxido Nitroso , Sevoflurano , Melhoria de Qualidade , Anestesia Geral , Meio Ambiente , Anestesia por Inalação
18.
Cancer Immunol Res ; 11(5): 687-702, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37058110

RESUMO

The tumor immune microenvironment dynamically evolves to support tumor growth and progression. Immunosuppressive regulatory T cells (Treg) promote tumor growth and metastatic seeding in patients with breast cancer. Deregulation of plasticity between Treg and Th17 cells creates an immune regulatory framework that enables tumor progression. Here, we discovered a functional role for Hedgehog (Hh) signaling in promoting Treg differentiation and immunosuppressive activity, and when Hh activity was inhibited, Tregs adopted a Th17-like phenotype complemented by an enhanced inflammatory profile. Mechanistically, Hh signaling promoted O-GlcNAc modifications of critical Treg and Th17 transcription factors, Foxp3 and STAT3, respectively, that orchestrated this transition. Blocking Hh reprogramed Tregs metabolically, dampened their immunosuppressive activity, and supported their transdifferentiation into inflammatory Th17 cells that enhanced the recruitment of cytotoxic CD8+ T cells into tumors. Our results demonstrate a previously unknown role for Hh signaling in the regulation of Treg differentiation and activity and the switch between Tregs and Th17 cells in the tumor microenvironment.


Assuntos
Neoplasias , Linfócitos T Reguladores , Humanos , Proteínas Hedgehog/metabolismo , Células Th17 , Transdução de Sinais , Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Microambiente Tumoral
19.
Chemosphere ; 320: 138063, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36754304

RESUMO

Photolytic degradation of brominated flame retardants is one of the potential decomposition pathways in the environment, and for some flame retardants such as ethane-bis(pentabromophenyl) (EBP), also called decabromodiphenyl ethane, there are concerns that degradation products may be harmful. In this paper, we present photolytic studies of EBP in high-impact polystyrene (HIPS) and polypropylene impact copolymer (PP) using accelerated weatherometry. The half-life of photolytic debromination of EBP in HIPS was estimated to be more than 200 years, which can be contrasted with half-lives of minutes for photolysis conducted on dilute EBP solutions. Perhaps more importantly, there was no subsequent debromination to the octabrominated congeners or lower. No evidence of debromination was seen in PP, which confirms the importance of matrix effects. We also saw no evidence of accelerated resin photooxidation caused by EBP. These studies demonstrate that EBP is much more photolytically stable in resins than structurally-similar decabromodiphenyl ether, and a read-across comparison between the two flame retardant molecules for this degradation pathway is misleading.


Assuntos
Retardadores de Chama , Éteres Difenil Halogenados , Plásticos , Fotólise , Retardadores de Chama/metabolismo , Meio Ambiente , Poliestirenos
20.
ACS Appl Mater Interfaces ; 15(5): 7518-7528, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36715357

RESUMO

Charge transfer across the electrode-electrolyte interface is a highly complex and convoluted process involving diverse solvated species with varying structures and compositions. Despite recent advances in in situ and operando interfacial analysis, molecular specific reactivity of solvated species is inaccessible due to a lack of precise control over the interfacial constituents and/or an unclear understanding of their spectroscopic fingerprints. However, such molecular-specific understanding is critical to the rational design of energy-efficient solid-electrolyte interphase layers. We have employed ion soft landing, a versatile and highly controlled method, to prepare well-defined interfaces assembled with selected ions, either as solvated species or as bare ions, with distinguishing molecular precision. Equipped with precise control over interfacial composition, we employed in situ multimodal spectroscopic characterization to unravel the molecular specific reactivity of Mg solvated species comprising (i.e., bis(trifluoromethanesulfonyl)imide, TFSI-) anions and solvent molecules (i.e., dimethoxyethane, DME/G1) on a Mg metal surface relevant to multivalent Mg batteries. In situ multimodal spectroscopic characterization revealed higher reactivity of the undercoordinated solvated species [Mg-TFSI-G1]+ compared to the fully coordinated [Mg-TFSI-(G1)2]+ species or even the bare TFSI-. These results were corroborated by the computed reaction pathways and energy barriers for decomposition of the TFSI- within Mg solvated species relative to bare TFSI-. Finally, we evaluated the TFSI reactivity under electrochemical conditions using Mg(TFSI)2-DME-based phase-separated electrolytes representing different solvated constituents. Based on our multimodal study, we report a detailed understanding of TFSI- decomposition processes as part of coordinated solvated species at a Mg-metal anode that will aid the rational design of improved sustainable electrochemical energy technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...