Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 174: 110393, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219439

RESUMO

The robustness of microbial consortia isolated from compost habitat encompasses the complementary metabolism that aids in consolidated bioprocessing (CBP) of lignocellulosic biomass (LCB) by division of labor across the symbionts. Composting of organic waste is deemed to be an efficient way of carbon recycling, where the syntrophic microbial population exerts a concerted action of lignin and polysaccharide (hemicellulose and cellulose) component of plant biomass. The potential of this interrelated microorganism could be enhanced through adaptive laboratory evolution (ALE) with LCB for its desired functional capabilities. Therefore, in this study, microbial symbionts derived from organic compost was enriched on saw dust (SD) (woody biomass), aloe vera leaf rind (AVLR) (agro-industrial waste) and commercial filter paper (FP) (pure cellulose) through ALE under different conditions. Later, the efficacy of enriched consortium (EC) on consolidated pretreatment and bio-saccharification was determined based on substrate degradation, endo-enzymes profiling and fermentable sugar yield. Among the treatment sets, AVLR biomass treated with EC-5 has resulted in the higher degradation rate of lignin (47.01 ± 0.66%, w/w) and polysaccharides (45.87 ± 1.82%, w/w) with a total sugar yield of about 60.01 ± 4.24 mg/g. In addition, the extent of structural disintegration of substrate after EC-treatment was clearly deciphered by FTIR and XRD analysis. And the factors of Pearson correlation matrix reinforces the potency of EC-5 by exhibiting a strong positive correlation between AVLR degradation and the sugar release. Thus, a consortium based CBP could promote the feasibility of establishing a sustainable second generation biorefinery framework.


Assuntos
Compostagem , Lignina , Lignina/metabolismo , Consórcios Microbianos , Celulose/química , Açúcares , Biomassa , Hidrólise
2.
Microb Cell Fact ; 20(1): 107, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34044834

RESUMO

Uprising fossil fuel depletion and deterioration of ecological reserves supply have led to the search for alternative renewable and sustainable energy sources and chemicals. Although first generation biorefinery is quite successful commercially in generating bulk of biofuels globally, the food versus fuel debate has necessitated the use of non-edible feedstocks, majorly waste biomass, for second generation production of biofuels and chemicals. A diverse class of microbes and enzymes are being exploited for biofuels production for a series of treatment process, however, the conversion efficiency of wide range of lignocellulosic biomass (LCB) and consolidated way of processing remains challenging. There were lot of research efforts in the past decade to scour for potential microbial candidate. In this context, evolution has developed the gut microbiota of several insects and ruminants that are potential LCB degraders host eco-system to overcome its host nutritional constraints, where LCB processed by microbiomes pretends to be a promising candidate. Synergistic microbial symbionts could make a significant contribution towards recycling the renewable carbon from distinctly abundant recalcitrant LCB. Several studies have assessed the bioprospection of innumerable gut symbionts and their lignocellulolytic enzymes for LCB degradation. Though, some reviews exist on molecular characterization of gut microbes, but none of them has enlightened the microbial community design coupled with various LCB valorization which intensifies the microbial diversity in biofuels application. This review provides a deep insight into the significant breakthroughs attained in enrichment strategy of gut microbial community and its molecular characterization techniques which aids in understanding the holistic microbial community dynamics. Special emphasis is placed on gut microbial role in LCB depolymerization strategies to lignocellulolytic enzymes production and its functional metagenomic data mining eventually generating the sugar platform for biofuels and renewable chemicals production.


Assuntos
Biocombustíveis , Carbono/metabolismo , Microbioma Gastrointestinal , Lignina/metabolismo , Simbiose , Animais , Biomassa , Celulase , Fermentação , Microbiologia Industrial , Insetos/microbiologia , Oxigenases , Ruminantes/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA