Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337155

RESUMO

The blood brain barrier (BBB) maintains the homeostasis of the central nervous system (CNS) and protects the brain from toxic substances present in the circulating blood. However, the impermeability of the BBB to drugs is a hurdle for CNS drug development, which hinders the distribution of the most therapeutic molecules into the brain. Therefore, scientists have been striving to develop safe and effective technologies to advance drug penetration into the CNS with higher targeting properties and lower off-targeting side effects. This review will discuss the limitation of artificial nanomedicine in CNS drug delivery and the use of natural extracellular vesicles (EVs), as therapeutic vehicles to achieve targeted delivery to the CNS. Information on clinical trials regarding CNS targeted drug delivery using EVs is very limited. Thus, this review will also briefly highlight the recent clinical studies on targeted drug delivery in the peripheral nervous system to shed light on potential strategies for CNS drug delivery. Different technologies engaged in pre- and post-isolation have been implemented to further utilize and optimize the natural property of EVs. EVs from various sources have also been applied in the engineering of EVs for CNS targeted drug delivery in vitro and in vivo. Here, the future feasibility of those studies in clinic will be discussed.

2.
Front Microbiol ; 12: 645180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177826

RESUMO

Fatty-acid signaling molecules can inhibit biofilm formation, signal dispersal events, and revert dormant cells within biofilms to a metabolically active state. We synthesized 2-heptylcyclopropane-1-carboxylic acid (2CP), an analog of cis-2-decenoic acid (C2DA), which contains a cyclopropanated bond that may lock the signaling factor in an active state and prevent isomerization to its least active trans-configuration (T2DA). 2CP was compared to C2DA and T2DA for ability to disperse biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa. 2CP at 125 µg/ml dispersed approximately 100% of S. aureus cells compared to 25% for C2DA; both 2CP and C2DA had significantly less S. aureus biofilm remaining compared to T2DA, which achieved no significant dispersal. 2CP at 125 µg/ml dispersed approximately 60% of P. aeruginosa biofilms, whereas C2DA and T2DA at the same concentration dispersed 40%. When combined with antibiotics tobramycin, tetracycline, or levofloxacin, 2CP decreased the minimum concentration required for biofilm inhibition and eradication, demonstrating synergistic and additive responses for certain combinations. Furthermore, 2CP supported fibroblast viability above 80% for concentrations below 1 mg/ml. This study demonstrates that 2CP shows similar or improved efficacy in biofilm dispersion, inhibition, and eradication compared to C2DA and T2DA and thus may be promising for use in preventing infection for healthcare applications.

3.
Pharmaceutics ; 13(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917577

RESUMO

The blood-brain barrier (BBB) is a natural obstacle for drug delivery into the human brain, hindering treatment of central nervous system (CNS) disorders such as acute ischemic stroke, brain tumors, and human immunodeficiency virus (HIV)-1-associated neurocognitive disorders. Poly(lactic-co-glycolic acid) (PLGA) is a biocompatible polymer that is used in Food and Drug Administration (FDA)-approved pharmaceutical products and medical devices. PLGA nanoparticles (NPs) have been reported to improve drug penetration across the BBB both in vitro and in vivo. Poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA), and poloxamer (Pluronic) are widely used as excipients to further improve the stability and effectiveness of PLGA formulations. Peptides and other linkers can be attached on the surface of PLGA to provide targeting delivery. With the newly published guidance from the FDA and the progress of current Good Manufacturing Practice (cGMP) technologies, manufacturing PLGA NP-based drug products can be achieved with higher efficiency, larger quantity, and better quality. The translation from bench to bed is feasible with proper research, concurrent development, quality control, and regulatory assurance.

4.
Int J Mol Sci ; 22(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375558

RESUMO

Biomaterials have been the subject of numerous studies to pursue potential therapeutic interventions for a wide variety of disorders and diseases. The physical and chemical properties of various materials have been explored to develop natural, synthetic, or semi-synthetic materials with distinct advantages for use as drug delivery systems for the central nervous system (CNS) and non-CNS diseases. In this review, an overview of popular biomaterials as drug delivery systems for neurogenerative diseases is provided, balancing the potential and challenges associated with the CNS drug delivery. As an effective drug delivery system, desired properties of biomaterials are discussed, addressing the persistent challenges such as targeted drug delivery, stimuli responsiveness, and controlled drug release in vivo. Finally, we discuss the prospects and limitations of incorporating extracellular vesicles (EVs) as a drug delivery system and their use for biocompatible, stable, and targeted delivery with limited immunogenicity, as well as their ability to be delivered via a non-invasive approach for the treatment of neurodegenerative diseases.


Assuntos
Materiais Biocompatíveis/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Animais , Estudos Clínicos como Assunto , Sistemas de Liberação de Medicamentos/efeitos adversos , Sistemas de Liberação de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Nanopartículas/química , Doenças Neurodegenerativas/tratamento farmacológico , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...