Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Med (Berl) ; 96(12): 1319-1332, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30315331

RESUMO

Restoration of cerebral blood flow (CBF) and upregulation of angiogenesis are crucial for brain repair and functional recovery after cerebral ischaemia. Pentraxin 3 (PTX3) is a key regulator of angiogenesis and is emerging as a promising target for cerebrovascular repair after stroke. Here, we investigated for the first time the role of PTX3 in long-term CBF, angiogenesis, and neuronal viability after ischaemic stroke induced by transient middle cerebral artery occlusion (MCAo). Lack of PTX3 had no effect on early brain damage, but significantly impaired restoration of CBF, 14 and 28 days after MCAo, compared to wild-type (WT) mice. Immunohistochemical analysis revealed that PTX3 KO mice have significantly greater neuronal loss, significantly decreased vessel diameter, vessel proliferation, vascular density, and reactive astrocytes and decreased expression of vascular endothelial growth factor receptor 2 (VEGR2), vascular extracellular matrix (ECM)-proteins (collagen IV, laminin), and integrin-ß, in the ipsilateral (stroke) hemisphere compared to WT mice, 28 days after MCAo. Therefore, PTX3 promotes sustained long-term recovery of CBF, angiogenesis, and neuronal viability after cerebral ischaemia. Collectively, these findings demonstrate the potential and clinical relevance of PTX3 as a promising therapeutic target, providing sustained long-term post-stroke neurovascular repair and reducing the loss of neurons. KEY MESSAGES: Pentraxin 3 (PTX3) is a key regulator of angiogenesis and is emerging as a promising target for cerebrovascular repair after stroke. Restoration of cerebral blood flow (CBF) and angiogenesis are crucial for brain repair and functional recovery after cerebral ischaemia. PTX3 promotes sustained long-term recovery of CBF, angiogenesis, and neuronal viability after cerebral ischaemia.


Assuntos
Proteína C-Reativa/fisiologia , Circulação Cerebrovascular , Infarto da Artéria Cerebral Média/fisiopatologia , Neovascularização Fisiológica , Componente Amiloide P Sérico/fisiologia , Animais , Encéfalo/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia
2.
Front Neurol ; 9: 734, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233484

RESUMO

Inflammation is a major pathological event following ischemic stroke that contributes to secondary brain tissue damage leading to poor functional recovery. Following the initial ischemic insult, post-stroke inflammatory damage is driven by initiation of a central and peripheral innate immune response and disruption of the blood-brain barrier (BBB), both of which are triggered by the release of pro-inflammatory cytokines and infiltration of circulating immune cells. Stroke therapies are limited to early cerebral blood flow reperfusion, and whilst current strategies aim at targeting neurodegeneration and/or neuroinflammation, innovative research in the field of regenerative medicine aims at developing effective treatments that target both the acute and chronic phase of inflammation. Anti-inflammatory regenerative strategies include the use of nanoparticles and hydrogels, proposed as therapeutic agents and as a delivery vehicle for encapsulated therapeutic biological factors, anti-inflammatory drugs, stem cells, and gene therapies. Biomaterial strategies-through nanoparticles and hydrogels-enable the administration of treatments that can more effectively cross the BBB when injected systemically, can be injected directly into the brain, and can be 3D-bioprinted to create bespoke implants within the site of ischemic injury. In this review, these emerging regenerative and anti-inflammatory approaches will be discussed in relation to ischemic stroke, with a perspective on the future of stroke therapies.

3.
J Neuroinflammation ; 12: 15, 2015 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-25616391

RESUMO

BACKGROUND: The acute phase protein pentraxin 3 (PTX3) is a new biomarker of stroke severity and is a key regulator of oedema resolution and glial responses after cerebral ischaemia, emerging as a possible target for brain repair after stroke. Neurogenesis and angiogenesis are essential events in post-stroke recovery. Here, we investigated for the first time the role of PTX3 in neurogenesis and angiogenesis after stroke. METHODS: PTX3 knockout (KO) or wild-type (WT) mice were subjected to experimental cerebral ischaemia (induced by middle cerebral artery occlusion (MCAo)). Poststroke neurogenesis was assessed by nestin, doublecortin (DCX) and bromodeoxyuridine (BrdU) immunostaining, whereas angiogenesis was assessed by BrdU, vascular endothelial growth factor receptor 2 (VEGFR2) and PECAM-1 immunostaining. In vitro neurogenesis and angiogenesis assays were carried out on neurospheres derived from WT or interleukin-1ß (IL-1ß) KO mice, and mouse endothelial cell line bEnd.5 respectively. Behavioural function was assessed in WT and PTX3 KO mice using open-field, motor and Y-maze tests. RESULTS: Neurogenesis was significantly reduced in the dentate gyrus (DG) of the hippocampus of PTX3 KO mice, compared to WT mice, 6 days after MCAo. In addition, recombinant PTX3 was neurogenic in vitro when added to neurospheres, which was mediated by IL-1ß. In vivo poststroke angiogenesis was significantly reduced in PTX3 KO mice compared to WT mice 14 days after MCAo, as revealed by reduced vascular density, less newly formed blood vessels and decreased expression of VEGFR2. In vitro, recombinant PTX3 induced marked endothelial cellular proliferation and promoted formation of tube-like structures of endothelial cell line bEnd.5. Finally, a lack of PTX3 potentiated motor deficits 14 days after MCAo. CONCLUSIONS: These results indicate that PTX3 mediates neurogenesis and angiogenesis and contributes to functional recovery after stroke, highlighting a key role of PTX3 as a mediator of brain repair and suggesting that PTX3 could be used as a new target for stroke therapy.


Assuntos
Isquemia Encefálica/fisiopatologia , Proteína C-Reativa/fisiologia , Neovascularização Fisiológica/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurogênese/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Indutores da Angiogênese , Animais , Modelos Animais de Doenças , Proteína Duplacortina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Recuperação de Função Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...