Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cancer Res Clin Oncol ; 150(5): 226, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696003

RESUMO

High-linear energy transfer (LET) radiation is a promising alternative to conventional low-LET radiation for therapeutic gain against cancer owing to its ability to induce complex and clustered DNA lesions. However, the development of radiation resistance poses a significant barrier. The potential molecular mechanisms that could confer resistance development are translesion synthesis (TLS), replication gap suppression (RGS) mechanisms, autophagy, epithelial-mesenchymal transition (EMT) activation, release of exosomes, and epigenetic changes. This article will discuss various types of complex clustered DNA damage, their repair mechanisms, mutagenic potential, and the development of radiation resistance strategies. Furthermore, it highlights the importance of careful consideration and patient selection when employing high-LET radiotherapy in clinical settings.


Assuntos
Transferência Linear de Energia , Neoplasias , Tolerância a Radiação , Humanos , Neoplasias/radioterapia , Neoplasias/patologia , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Animais
2.
Front Microbiol ; 15: 1389074, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605710

RESUMO

The co-protease activity in the RecA-ssDNA complex cleaves the autorepressor LexA, resulting in the derepression of a large number of genes under LexA control. This process is called the SOS response, and genes that are expressed in response to DNA damage are called SOS genes. The proteins encoded by the SOS genes are involved in both DNA repair and maintaining the functions of crucial cell division proteins (e.g., FtsZ) under check until the damaged DNA is presumably repaired. This mechanism of SOS response is the only known mechanism of DNA damage response and cell cycle regulation in bacteria. However, there are bacteria that do not obey this rule of DNA damage response and cell cycle regulation, yet they respond to DNA damage, repair it, and survive. That means such bacteria would have some alternate mechanism(s) of DNA damage response and cell cycle regulation beyond the canonical pathway of the SOS response. In this study, we present the perspectives that bacteria may have other mechanisms of DNA damage response and cell cycle regulation mediated by bacterial eukaryotic type Ser/Thr protein kinases as an alternate to the canonical SOS response and herewith elaborate on them with a well-studied example in the radioresistant bacterium Deinococcus radiodurans.

3.
J Bacteriol ; 206(4): e0000624, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38445859

RESUMO

Bacterial biofilms are intricate ecosystems of microbial communities that adhere to various surfaces and are enveloped by an extracellular matrix composed of polymeric substances. Within the context of bacterial biofilms, extracellular DNA (eDNA) originates from cell lysis or is actively secreted, where it exerts a significant influence on the formation, stability, and resistance of biofilms to environmental stressors. The exploration of eDNA within bacterial biofilms holds paramount importance in research, with far-reaching implications for both human health and the environment. An enhanced understanding of the functions of eDNA in biofilm formation and antibiotic resistance could inspire the development of strategies to combat biofilm-related infections and improve the management of antibiotic resistance. This comprehensive review encapsulates the latest discoveries concerning eDNA, encompassing its origins, functions within bacterial biofilms, and significance in bacterial pathogenesis.


Assuntos
Biofilmes , Ecossistema , Humanos , DNA Bacteriano/genética , Bactérias/genética , Matriz Extracelular
4.
Appl Environ Microbiol ; 90(2): e0194823, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38193676

RESUMO

Deinococcus radiodurans exhibits remarkable survival under extreme conditions, including ionizing radiation, desiccation, and various DNA-damaging agents. It employs unique repair mechanisms, such as single-strand annealing (SSA) and extended synthesis-dependent strand annealing (ESDSA), to efficiently restore damaged genome. In this study, we investigate the role of the natural transformation-specific protein DprA in DNA repair pathways following acute gamma radiation exposure. Our findings demonstrate that the absence of DprA leads to rapid repair of gamma radiation-induced DNA double-strand breaks primarily occur through SSA repair pathway. Additionally, our findings suggest that the DprA protein may hinder both the SSA and ESDSA repair pathways, albeit in distinct manners. Overall, our results highlight the crucial function of DprA in the selection between SSA and ESDSA pathways for DNA repair in heavily irradiated D. radiodurans.IMPORTANCEDeinococcus radiodurans exhibits an extraordinary ability to endure and thrive in extreme environments, including exposure to radiation, desiccation, and damaging chemicals, as well as intense UV radiation. The bacterium has evolved highly efficient repair mechanisms capable of rapidly mending hundreds of DNA fragments in its genome. Our research indicates that natural transformation (NT)-specific dprA genes play a pivotal role in regulating DNA repair in response to radiation. Remarkably, we found that DprA is instrumental in selecting DNA double-strand break repair pathways, a novel function that has not been reported before. This unique regulatory mechanism highlights the indispensable role of DprA beyond its native function in NT and underscores its ubiquitous presence across various bacterial species, regardless of their NT proficiency. These findings shed new light on the resilience and adaptability of Deinococcus radiodurans, opening avenues for further exploration into its exceptional survival strategies.


Assuntos
Proteínas de Bactérias , Deinococcus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reparo do DNA , Quebras de DNA de Cadeia Dupla , DNA/metabolismo , Dano ao DNA , Deinococcus/genética , Deinococcus/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo
5.
Front Cell Dev Biol ; 9: 636178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959605

RESUMO

DrRecA and PprA proteins function are crucial for the extraordinary resistance to γ-radiation and DNA strand break repair in Deinococcus radiodurans. DrRecA mediated homologous recombination help in DNA strand break repair and cell survival, while the PprA protein confers radio-resistance via its roles in DNA repair, genome maintenance, and cell division. Genetically recA and pprA genes interact and constitute an epistatic group however, the mechanism underlying their functional interaction is not clear. Here, we showed the physical and functional interaction of DrRecA and PprA protein both in solution and inside the cells. The absence of the pprA gene increases the recombination frequency in gamma-irradiated D. radiodurans cells and genomic instability in cells growing under normal conditions. PprA negatively regulates the DrRecA functions by inhibiting DrRecA mediated DNA strand exchange and ATPase function in vitro. Furthermore, it is shown that the inhibitory effect of PprA on DrRecA catalyzed DNA strand exchange was not due to sequestration of homologous dsDNA and was dependent on PprA oligomerization and DNA binding property. Together, results suggest that PprA is a new member of recombination mediator proteins (RMPs), and able to regulate the DrRecA function in γ-irradiated cells by protecting the D. radiodurans genome from hyper-recombination and associated negative effects.

6.
J Biomol Struct Dyn ; 38(1): 114-123, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30688163

RESUMO

Deinococcus RecA (DrRecA) protein is a key repair enzyme and contributes to efficient DNA repair of Deinococcus radiodurans. Phosphorylation of DrRecA at Y77 (tyrosine 77) and T318 (threonine 318) residues modifies the structural and conformational switching that impart the efficiency and activity of DrRecA. Dynamics comparisons of DrRecA with its phosphorylated analogues support the idea that phosphorylation of Y77 and T318 sites could change the dynamics and conformation plasticity of DrRecA. Furthermore, docking studies showed that phosphorylation increases the binding preference of DrRecA towards dATP versus ATP and for double-strand DNA versus single-strand DNA. This work supporting the idea that phosphorylation can modulate the crucial functions of this protein and having good concordance with the experimental data. AbbreviationsDrRecADeinococcus RecADSBDNA double-strand breakshDNAheteroduplex DNASTYPKserine/threonine/tyrosine protein kinaseT318threonine 318Y77tyrosine 77Communicated by Ramaswamy H. Sarma.


Assuntos
Deinococcus/enzimologia , Deinococcus/efeitos da radiação , Tolerância a Radiação , Recombinases Rec A/química , Recombinases Rec A/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Dano ao DNA , Reparo do DNA , DNA de Cadeia Simples , Modelos Moleculares , Fosforilação , Relação Estrutura-Atividade
7.
J Basic Microbiol ; 53(6): 518-31, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22961447

RESUMO

Deinococcus radiodurans is known for its extraordinary resistance to various DNA damaging agents including γ-radiation and desiccation. The pqqE:cat and Δdr2518 mutants making these cells devoid of pyrroloquinoline quinone (PQQ) and a PQQ inducible Ser/Thr protein kinase, respectively, became sensitive to γ-radiation. Transcriptome analysis of these mutants showed differential expression of the genes including those play roles in oxidative stress tolerance and (DSB) repair in D. radiodurans and in genome maintenance and stress response in other bacteria. Escherichia coli cells expressing DR2518 and PQQ showed improved resistance to γ-radiation, which increased further when both DR2518 and PQQ were present together. Although, profiles of genes getting affected in these mutants were different, there were still a few common genes showing similar expression trends in both the mutants and some others as reported earlier in oxyR and pprI mutant of this bacterium. These results suggested that PQQ and DR2518 have independent roles in γ-radiation resistance of D. radiodurans but their co-existence improves radioresistance further, possibly by regulating differential expression of the genes important for bacterial response to oxidative stress and DNA damage.


Assuntos
Deinococcus/fisiologia , Deinococcus/efeitos da radiação , Cofator PQQ/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dano ao DNA , Reparo do DNA , DNA Bacteriano/genética , DNA Bacteriano/efeitos da radiação , Deinococcus/genética , Deinococcus/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Raios gama , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica , Mutação , Estresse Oxidativo/genética , Cofator PQQ/genética , Proteínas Quinases/genética , Tolerância a Radiação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...