Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29724, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38699754

RESUMO

The electrochemical act of valve-regulated lead acid batteries can be enhanced by conductive materials like metal oxides. This work aims to examine the preparation and influence of zirconia on poly(vinyl alcohol) based gel valve-regulated lead acid battery. Characterizations like Fourier transform infrared spectroscopy, ionic conductivity, water retention study, cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge techniques were done. The optimized gel system exhibited a discharge capacity of 198.45 µAh cm-2 at the current density of 0.6 mA cm-2. The battery cell with an optimized gel matrix displayed a maximum discharge capacity of 22.5 µAh at a current of 20 µA. After 500 continuous cycles, the battery attained a discharge capacity retention of 91 %. The presence of zirconia will increase the electrochemical performance of gel valve-regulated lead acid batteries.

2.
Gels ; 8(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36547316

RESUMO

The gel electrolyte significantly influences gel valve-regulated lead acid battery performance. To address this, the paper describes the preparation of novel polymer gel electrolytes using poly (vinyl alcohol) (PVA) and tetraethylorthosilicate (TEOS) for valve-regulated lead-acid batteries. FTIR technique is used to confirm the chemical reaction between PVA and TEOS. Electrochemical analyses such as cyclic voltammetry and electrochemical impedance spectroscopy were applied to optimize the concentration of PVA-TEOS polymer gel electrolyte. The optimum concentration of polymer gel electrolyte was determined as 20 wt% of TEOS in PVA (PE-1) with higher anodic peak and lower Rs and Rct values. The Galvanostatic charge-discharge tests were performed on the optimized gel system prototype battery. The highest capacity of 6.86 × 10-5 Ah at a current density of 0.2 mA cm-2 was achieved with an excellent capacity retention ratio of 85.7% over 500 cycles. The exceptional cycle performance and high capacity make PVA-TEOS gel electrolyte a promising candidate for practical battery application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA